Supporting Information:

Adsorption isotherm study:

The linear equation for Langmuir and Freundlich isotherm models are expressed as follows:

```
Freundlich isotherm : \log q_e = \log K_F + (1 / n) \log C_e ----- (3)
```

```
Langmuir isotherm : (Ce / q_e) = (1 / Q_o b) + (Ce / Q_o) ------ (4)
```

Where K_F (mg g⁻¹) is the Freundlich constant and 'n' the freundlich exponent. Where q_e (mg g⁻¹) is the adsorbed amount of Hg (II) at equilibrium, C_e (mg L⁻¹) is the equilibrium concentration of Hg (II), Q_o (mg g⁻¹) and b (L mg⁻¹) are Langmuir constants related to adsorption capacity and energy of adsorption. Additional, the important characteristics of the Langmuir isotherm can be explained separation factor R_L , which is calculated by the equation 4.²⁴

 $R_L = 1/(1+bQ_0)$ -----(5)

The R_L value assumes the nature and the feasibility of adsorption process are specified in Table 1.

R _L value	Adsorption process
R _L > 1	Unfavorable
$R_L = 1$	Linear
0< R _L < 1	Favorable
$R_L = 0$	Irreversible

	Table 1	Nature	of	adsor	ption	isothern
--	---------	--------	----	-------	-------	----------

Adsorption kinetics study:

The pseudo-first-order kinetic model can be expressed as:³¹

$$Log (q_e - q_t) = log q_e - [k_1 / 2.303] t$$
 ------(6)

Where k_1 is the pseudo-first-order rate constant (min⁻¹) and qe (mg g⁻¹) is the adsorption capacity at equilibrium and qt (mg g⁻¹) is the adsorbed amount of metal ion after time t (min).

The pseudo-second-order kinetic model can be expressed as:³²

 $t / q_t = 1 / k_2 q_e^2 + t / q_e$ -----(7)

Where k_2 is the pseudo-second-order rate constant (g mg⁻¹ min⁻¹).

Intra-Particle diffusion model:

The equation for intra-Particle diffusion model can be expressed as

$$q_t = k_{id} t^{1/2} + C$$
 -----(8)

Where, q_t is the adsorption capacity at any time t and k_{id} is the intra particle diffusion rate constant and C is the film thickness.