Supplementary Information

Flexible superhydrophobic polysiloxane aerogels for oil-water separation via one-pot synthesis in supercritical CO_2

Fangxin Zou,^a Li Peng,^b Wenxin Fu,^{*a} Jianling Zhang^{*b} and Zhibo Li^{*c}

^a Beijing National Laboratory of Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.
^b CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China.

^c School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

General procedure for the synthesis of the methyl hydrogen polysiloxane (A).

For A1 (m=5, n=25), ¹H NMR (400 MHz, CDCl₃, δ, ppm) 0.08 (br s, 20H, -Si(CH₃)₂), 0.15

(br s, 2H, $-SiH(CH_3)_2$), 0.18 (br s, 2H, $-SiH(CH_3)$), 4.46-4.88 (br s, 1H, $-SiH(CH_3)$ and -

SiH(CH₃)₂); ²⁹Si NMR (300MHz, δ, ppm) -6.64 (-SiH(CH₃)₂), -21.57 (-Si(CH₃)₂), -37.15 (-

SiH(CH₃)); MALDI-TOF MS (m/z) Calcd. for the repeating unit: -Si(CH₃)₂-O-, 74 and -

SiH(CH₃) -O-, 60; found: 74 and 60, respectively.

For A2 (m=7, n=23), ¹H NMR (400 MHz, CDCl₃, δ, ppm) 0.08 (br s, 13H, -Si(CH₃)₂), 0.15

(br s, 2H, -SiH(CH₃)₂), 0.18 (br s, 2H, -SiH(CH₃)), 4.46-4.88 (br s, 1H, -SiH(CH₃) and -

SiH(CH₃)₂); ²⁹Si NMR (300MHz, δ, ppm) -6.09 (-SiH(CH₃)₂), -20.19(-Si(CH₃)₂), -36.51 (-

SiH(CH_3)); MALDI-TOF MS (m/z) Calcd. for the repeating unit: -Si(CH_3)_2-O-, 74 and -

SiH(CH₃) -O-, 60; found: 74 and 60, respectively.

The synthesis of the vinyl-terminated polydimethylsiloxane (B).

¹H NMR (400 MHz, CDCl₃, δ , ppm) 0.07 (br s, 97H, -Si(C<u>H</u>₃)₂), 0.16 (br s, 6H, -SiVi(C<u>H</u>₃)₂), 5.73 (br dd, 1H, -Si(CH₃)CH=C<u>H</u>₂ , *J* =20.3, 4.0 Hz), 5.93 (br dd, 1H, -Si(CH₃)CH=C<u>H</u>₂, *J* =14.8, 4.0 Hz), 6.13 (br dd, 1H, -Si(CH₃)C<u>H</u>=CH₂, *J* =20.2, 14.8 Hz); ²⁹Si NMR (300MHz, δ , ppm) -4.18 (-Si(CH₃)₂CH=CH₂), -22.06(-Si(CH₃)₂) ; MALDI-TOF MS (m/z) Calcd. for the repeating unit: -Si(CH₃)₂-O-, 74; found: 74.

Aerogels ^[a]	Reaction concentration ^[b] [mg ml ⁻¹]	Reaction pressure [MPa]	Density [mg cm ⁻³]	Skeletal Density [g cm ⁻³]	Porosity [%]	Specific surface area [m ² g ⁻¹]	T _d ^[c] [°C]	Water contact angle [°]
A1-B	136	16	_[d]	-	-	-	-	-
	136	22	227	1.10	79.4	58.67	404	154
	95		-	-	-	-	-	-
	68		-	-	-	-	-	-
A2-B	136	22	258	1.10	76.5	33.44	407	150
	95		156	1.12	86.0	45.98	406	153
	68		145	1.10	86.8	34.70	400	156

Table S1 Physical properties of polysiloxane aerogels synthesized in scCO₂ at 40 °C

^[a] the chemical structures for A are shown in Figure 1; ^[b] the reaction concentration was calculated by the following equation, reaction concentration = $(m_A+m_B)/V$, where m_A , m_B are the mass of the methyl hydrogen polysiloxane (A) and vinyl-terminated PDMS (B), respectively. V is the volume of the reaction vessle; ^[c] the decomposition temperature at the weight loss of 5%; ^[d] '-' means that aerogel could not form in this condition.

Table S2 Mechanical property comparison of the as-synthesized polysiloxane aerogels with

various since acrogers						
Material	Young's modulus (KPa)	Reference ^[a]				
A1-B aerogel	7	our work				
silica	[b]	20				
silica /polyurethanes	40	30				
composite	+0	50				
silica	[b]	31				
silica /sodium dodecyl sulfate	200-900	32				
composite	200 900	52				
silica	640-4200	33				
a • 1• 1 • b	1	1.1 1 11				

various silica aerogels

^a: cited in the manuscript; ^b: means that toughness monoliths aerogel could not be formed.

Table S3 Thermal stability comparison of the as-synthesized polysiloxane aerogels with

various aerogels

Material	$T_d [^{o}C]$	Reference ^[a]
A1-B aerogel	400 (5% weight loss)	our work
polyvinyl alcohol/cellulose nanofibrils/graphene oxide	337 (20% weight loss)	34
polyvinyl alcohol/cellulose nanofibril	302.5 (30% weight loss)	17
a · 1 · 1		

^a: cited in the manuscript.

Material	Absorption capacity $(g g^{-1})$	Reference	
A1-B aerogel	5-15	our work	
Silica aerogel	5-11	20 ^[a]	
Graphene-based aerogel	28-40	1	
Polysiloxane sponge	4-11	2	

Table S4 Comparison of various absorbent materials

^a: cited in the manuscript.

Fig. S1. a) Synthesis route of the methyl hydrogen polysiloxane (A). b) Synthesis route of the vinyl-terminated polydimethylsiloxane (B).

Fig. S2. ¹H NMR spectra of A1, A2 and B.

Fig. S3. ²⁹Si NMR spectra of A1, A2 and B.

Fig. S4. MALDI-TOF spectra of A1, A2 and B.

Fig. S5. (a) TEM image for A1-B aerogel from 136 mg/mL.

Fig. S6. Pore size distributions of A1-B aerogel from 136 mg/mL (a) and A2-B aerogels from 68mg/mL (b), 95 mg/mL (c), and 136 mg/mL (d) in scCO₂ at 22 Mpa

Fig. S7. (a) SEM images for A1-B aerogel after 100 cycles of compression test at room temperature, (b) SEM images for A1-B aerogel after the absorption of hexane.

Fig. S8. TGA results of A1-B aerogel from 136 mg/mL (a) and A2-B aerogels from 136 mg/mL (b), 95 mg/mL (c), and 68 mg/mL (d) in scCO₂ at 22 MPa.

Fig. S9. Absorption capacities of aerogels for various organic solvents, as indicated by weight gain: A1-B aerogel from 136 mg/mL (a), A2-B aerogels from 136 mg/mL (b), 95 mg/mL (c), 68 mg/mL (d) in scCO₂ at 22 MPa.

Fig. S10. Photographs and SEM images of A2-B aerogels from 95 mg/mL (a, b) and 68 mg/mL (c, d) in scCO₂ at 22 MPa.

Fig. S11. Photograph (a) and SEM image (b) of A1-B monoliths from 136 mg/mL in scCO₂ at 16 MPa.

Fig. S12. Photograph (a) and SEM image (b) of A1-B aerogel from 136 mg/mL dioxane at atmospheric pressure.

References:

- 1 T. Wu, M. Chen, L. Zhang, X. Xu, Y. Liu, J. Yan, W. Wang and J. Gao, *J.Mater. Chem, A*, 2013, **1**, 7612-7621.
- 2 S. Choi, T. Kwon, H. Im, D. Moon, D. J. Baek, M. Seol, J. P. Duarte and Y. Choi, *ACS Appl. Mater. Interfaces*, 2011, **3**, 4552-4556.