| 1 | Supplementary | Material |
|---|---------------|----------|
|---|---------------|----------|

2

| 3  | Two-dimensional FTIR correlation spectroscopy reveals chemical                   |  |  |  |
|----|----------------------------------------------------------------------------------|--|--|--|
| 4  | changes in dissolved organic matter during the biodrying process of raw          |  |  |  |
| 5  | sludge and anaerobically digested sludge                                         |  |  |  |
| 6  |                                                                                  |  |  |  |
| 7  | Xiaowei Li, Xiaohu Dai*, Lingling Dai, Zhigang Liu                               |  |  |  |
| 8  |                                                                                  |  |  |  |
| 9  | State Key Laboratory of Pollution Control and Resources Reuse, National          |  |  |  |
| 10 | Engineering Research Center for Urban Pollution Control, School of Environmental |  |  |  |
| 11 | Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092,   |  |  |  |
| 12 | PR China                                                                         |  |  |  |
| 13 |                                                                                  |  |  |  |
| 14 | *corresponding author, e-mail: daixiaohu@tongji.edu.cn (Dai X);                  |  |  |  |
| 15 | lixiaowei419@163.com (Li X)                                                      |  |  |  |
| 16 |                                                                                  |  |  |  |
| 17 |                                                                                  |  |  |  |
| 18 | The Number of Pages: 4                                                           |  |  |  |
| 19 | The Number of Tables: 1                                                          |  |  |  |
| 20 | The Number of Figures: 2                                                         |  |  |  |
| 21 |                                                                                  |  |  |  |
| 22 |                                                                                  |  |  |  |

## 23 Materials and methods

## 24 **Organic elemental analysis of the matrices**

- 25 C, N and H contents of the freeze-dried samples were measured by an element
- 26 analyzer (Vario EL III, Elementar, Germany).

## 27 Volatile fatty acid (VFA) contents of DOMs

28 Volatile fatty acid (VFA) contents were analyzed according to the method <sup>1</sup>.

| Parameters                               | Raw sludge<br>(RS) | Anaerobically<br>digested<br>sludge (ADS) | Wheat residues (WR) |
|------------------------------------------|--------------------|-------------------------------------------|---------------------|
| Water content (Wet basis, %)             | $77.45 \pm 0.34$   | 78.23±0.43                                | 11.60±0.27          |
| VS content (dry basis, %)                | 56.51±0.28         | 38.97±0.15                                | 93.28±0.42          |
| C content (dry basis, %)                 | 32.97±0.25         | $19.85 \pm 0.18$                          | 42.19±0.19          |
| N content (dry basis, %)                 | 4.25±0.09          | $2.58 \pm 0.12$                           | 3.50±0.14           |
| H content (dry basis, %)                 | $5.57 \pm 0.15$    | 3.95±0.13                                 | 6.97±0.17           |
| C/N ratio                                | 10.34              | 10.26                                     | 16.07               |
| Calorific value (MJ Kg <sup>-1</sup> VS) | 26.63±0.05         | 22.37±0.08                                | 17.69±0.11          |

29 Table S1 the characteristics of the raw materials



32 Fig. S1 the schematic diagram of the bio-drying system



33

34 Figure S2 Temporal evolutions of average temperature (a) and temperature cumulation (b) in the

35 matrixes during bio-drying process



37 Fig. S3 Contents of volatile fatty acids in the DOMs during the bio-drying process of ADS and



## **References**

40 1. X. Li, X. Dai, J. Takahashi, N. Li, J. Jin, L. Dai and B. Dong, Bioresour. Technol., 2014, 159,

41 412-420.