Supplementary information

Synthesis and bifunctional catalysis of metal nanoparticleloaded periodic mesoporous organosilicas modified with amino

groups

Yu Horiuchi, ${ }^{a, *}$ Dang Do Van, ${ }^{a}$ Yusuke Yonezawa, ${ }^{a}$ Masakazu Saito, ${ }^{b}$ Satoru Dohshi, ${ }^{c}$ Tae-Ho Kim ${ }^{d}$ and Masaya Matsuoka ${ }^{a}$ *
${ }^{a}$ Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
${ }^{b}$ Department of Chemistry and Materials Science, National Institute of Technology, Gunma College, 580 Toriba-machi, Maebashi, Gunma 371-8530, Japan.
${ }^{c}$ Technology Research Institute of Osaka Prefecture, 1-18-13, Kishibe-naka, Suita, Japan
${ }^{d}$ Division of Mechanics and ICT Convergence Engineering, Sun Moon University, Republic of Korea.

E-mail: horiuchi@chem.osakafu-u.ac.jp; matsumac@chem.osakafu-u.ac.jp

${ }^{1} \mathrm{H}$ NMR spectral data

The products in Knoevenagel condensation reactions were also analysed by ${ }^{1} \mathrm{H}$ NMR spectroscopy. ${ }^{1} \mathrm{H}$ NMR spectral data were as follow:
α-Cyanocinnamate. ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=8.25(1 \mathrm{H}, \mathrm{s}) ; 7.99(2 \mathrm{H}, \mathrm{d}, 8.26 \mathrm{~Hz}) ; 7.56(1 \mathrm{H}, \mathrm{t}, 7.53$
$\mathrm{Hz}) ; 7.5(2 \mathrm{H}, \mathrm{t}, 8.26 \mathrm{~Hz}) ; 4.38(2 \mathrm{H}, \mathrm{q}, 9.18 \mathrm{~Hz}) ; 1.40(3 \mathrm{H}, \mathrm{q}, 9.18 \mathrm{~Hz})$

Benzylidenemalononitrile. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87(2 \mathrm{H}, \mathrm{d}, 7.96 \mathrm{~Hz}) ; 7.73(1 \mathrm{H}, \mathrm{s}) ; 7.61(1 \mathrm{H}, \mathrm{t}$, $7.04 \mathrm{~Hz}) ; 7.51(2 \mathrm{H}, \mathrm{t}, 7.96 \mathrm{~Hz})$
trans- β-Nitrostyrene. ${ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta=7.99(1 \mathrm{H}, \mathrm{d}, 13.23 \mathrm{~Hz}) ; 7.57(1 \mathrm{H}, \mathrm{d}, 13.23 \mathrm{~Hz}) ; 7.53(2 \mathrm{H}$, d, 7.72 Hz$) ; 7.48(1 \mathrm{H}, \mathrm{t}, 7.35 \mathrm{~Hz}) ; 7.44(2 \mathrm{H}, \mathrm{t}, 7.72 \mathrm{~Hz})$

Diethyl benzylidenemalonate. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.72(1 \mathrm{H}, \mathrm{s}) ; 7.43(2 \mathrm{H}, \mathrm{m}) ; 7.36(3 \mathrm{H}, \mathrm{m}) ; 4.32$ $(2 \mathrm{H}, \mathrm{q}, 7.35 \mathrm{~Hz}) ; 4.28(2 \mathrm{H}, \mathrm{q}, 7.35 \mathrm{~Hz}) ; 1.31(3 \mathrm{H}, \mathrm{t}, 7.35 \mathrm{~Hz}) ; 1.26(3 \mathrm{H}, \mathrm{t}, 7.35 \mathrm{~Hz})$

Experimental procedure

Synthesis of PME-DMED: PME modified with N, N-dimethylethylenediamine (PME-DMED) was synthesised by epoxidation of bridging ethylene moieties within PME and the following nucleophilic addition reaction with N, N-dimethylethylenediamine. Firstly, PME (500 mg) was loaded into a Schlenk flask and degassed at room temperature for 30 min under vacuum. After nitrogen purge, dehydrated acetonitrile (12 mL) and 2 M aqueous NaOH solution (50 mg) were added into the flask and cooled in an ice bath. Then, TBHP (3 mL) was added to the mixture, which was stirred at 273 K for 5 h . The resulting white solid was separated by filtration, washed with acetonitrile and ethanol and dried under vacuum, yielding an epoxide
product (PME-EP).

Subsequently, PME-EP (300 mg) was loaded into a Schlenk flask and degassed under vacuum at room temperature for 30 min and at 393 K for 12 h . After cooling to room temperature and nitrogen purge, dehydrated toluene (15 mL) and N, N-dimethylethylenediamine (5 mL) were added into the flask and stirred at 333 K for 12 h . The resulting white solid was separated by filtration, washed with toluene and methanol and dried under vacuum, yielding PME-DMED.

Synthesis of Pd/PME-DMED: Pd NPs-loaded PME-DMED was synthesised by a simple colloidal method. A mixture of 10 mM aqueous PdCl_{2} solution (1.4 mL), ion-exchanged water (10 mL) and PVP (33 mg) was stirred in an ice bath. To the solution, 88 mM aqueous NaBH_{4} solution $(1 \mathrm{~mL})$ was added dropwise, which was stirred at 273 K for 30 min . After that, PME-DMED (150 mg) was added into the solution and resulting mixture was stirred at 273 K for 4 h . The thus-obtained solid was separated by filtration, washed with ionexchanged water and dried under vacuum, yielding Pd/PME-DMED.

Tsuji-Trost reaction: The catalyst (30 mg) was placed into a 35 mL Schlenk flask, which was then fully purged with Ar. A solution of ethanol (3 mL) , allyl methyl carbonate (0.3 mmol) and ethyl acetoacetate (3.6 mmol) was introduced into the flask, deoxygenated by bubbling of Ar for 30 min and stirred at 353 K for 24 h . The progression of the reaction was monitored by gas chromatography (Shimadzu GC-14B with a flame ionization detector) equipped with an InertCap ${ }^{\circledR} 1$ capillary column.

