Supporting Information

Influence of Interface Properties on Charge Density, Band Edge Shifts, and

kinetics of Photoelectrochemical Process in p-Type NiO Photocathode

Qian Liu, Lifang Wei, Shuai Yuan, Xin Ren, Yin Zhao*, Zhuyi Wang, Meihong

Zhang, Liyi Shi*, Dongdong Li, Aijun Li

Fig. S1. XRD film diffraction patterns of the (a) NiO and (b) NiO-Ac films. The NiO peaks are indexed according to JCPDF file 65-2901. The FTO peaks are indexed according to JCPDF file 01-077-0447.

Fig. S2. SEM of (I) surface and (II) cross-section for (A) NiO and (B) NiO-Ac films.

Fig. S3. Results of the XPS analysis: (A) Ni 2p and (B) O 1s spectra for NiO-Ac. Raw

data is given by (\bullet) and with fitted components (orange lines).

Fig. S4. Current-voltage characteristics of NiO and NiO-Ac devices under standardized AM 1.5 illumination of 100 mW/cm² (active area 0.25 cm²).

Table S1. Comparison of the EIS fitting data for the bare and post-treated NiO

DSSCs.										
sample	$R_{s}\left(\Omega\right)$	$R_{pt}\left(\Omega\right)$	$R_t\left(\Omega\right)$	$R_{rec}\left(\Omega\right)$	N	C_u	T _{th}	T _h	L _n	η_{cc}
						[mF/cm ²]	[ms]	[s]	[um]	
NiO	10.5	0.75	10.7	280	0.93	0.87	9.3	0.24	5.1	0.96
NiO-S	11.2	1.43	11.9	452	0.93	0.86	10.3	0.39	6.1	0.97
NiO-ozone	10.1	0.46	9.2	200	0.94	0.81	7.4	0.16	4.6	0.95

For a more exact fitting, the capacitance element is replaced by a constant phase element (CPE), in which $Y_0(Q)$ is a constant with the dimension of Siemens \sec^{α} , and $\alpha(N)$ is an empirical constant. All the parameters above could achieve by transmission line equivalent circuit. When CPE is in parallel with a resistance, the capacitance can be calculated by the following Equation¹:

$$C_{\mu} = (QR)^{1/N} / R \tag{S1}$$

After calculated the parameter C_{μ} , then the other parameters shown in Table S1 were calculated by using the following Equations²⁻⁴:

$$\tau_h = R_{rec} C_\mu \tag{S2}$$

$$\tau_{th} = R_t C_\mu \tag{S3}$$

$$L_n = d\sqrt{R_{rec}/R_t} \tag{S4}$$

$$\eta_{cc} = 1 - \tau_{th} / \tau_h \tag{S5}$$

 $C_{\mu}\!\!:$ Chemical capacitance calculated by fitting data

R_s: Series resistance measured by impedance

R_{pt}: Charge-transfer resistance at counter electrode measured by impedance

Rt: Transport resistance of the film measured by impedance

R_{rec}: Recombination resistance of the film measured by impedance

L_n: hole diffusion length

 $\eta_{cc}:$ charge collection efficiency

All the bias in Fig. 5 have been corrected by Equation:

$$V_{corr} = V_{app} - I_{dark} \mathbf{g} \mathbf{R}_{s} + (1/3) \mathbf{R}_{t} + \mathbf{R}_{pt}$$
(S6)

sample	a
NiO	0.024
NiO-S	0.023
NiO-ozone	0.053

Table S2. Comparison of a parameters calculated from C_{μ} that obtained by EIS.

The parameter a could be achieved by fitting the plots in Fig. 5C using the exponent Equation (3), which represents for the depth of the trap energy distribution, and the a is an absolute value.

Table S3. Comparison of short-circuit photocurrent density (J_{sc}) , open-circuit photovoltage (V_{oc}) , fill factor (FF), measured under AM 1.5, of p-type DSSCs

	V _{oc}	J _{sc}	FF	η
sample	[mV]	[mA/cm ²]	[%]	[%]
NiO	74	1.18	37.7	0.032 ± 0.002
NiO-S	81	1.13	39.2	0.036 ± 0.002
NiO-ozone	66	0.72	42.2	0.020 ± 0.001
NiO-Ac	80	1.45	36.2	0.042 ± 0.002

employing bare NiO and post-treated NiO film.

	Ols				Vi2p _{3/2}		
sample	NiO	Ni(OH) ₂	NiOOH	NiO	Ni(OH) ₂	NiOOH	
	[eV]	[eV]	[eV]	[eV]	[eV]	[eV]	(NiO:Ni(OH) ₂ :NiOOH)
NiO-Ac	529.28	530.94	-	853.71	855.20	856.05	1:2.49:0.90

Table S4. Surface analysis by XPS spectra for the Ni(CH₃COOH)₂ treated NiO.

Notes and References

1 Z. CHuang, G. Natu, Z. Ji, P. Hasin, Y. Wu, J. Phys. Chem. C, 2011,115, 25109-25114.

2 Q. Wang, S. Ito, M. Grätzel, F. Fabregat-Santiago, I. Mora-Seró, J. Bisquert, T. Bessho, H. Imai, J. Phys. Chem. B, 2006, 110, 25210-25221.

3 J. Bisquert, F. Fabregat-Santiago, I. Mora-Sero, G. Garcia-Belmonte, S. Gimenez, J. Phys. Chem. C, 2009, 113, 17278-17290.

4 Z. Huang, G. Natu, Z. Ji, M. He, M. Yu, Y. Wu, J. Phys. Chem. C, 2012 ,116, 26239-26246.