Regioselective Synthesis of Vitamin K₃ Based Dihydrobenzophenazine Derivative: Their Novel Crystal Structure and DFT Studies

Dattatray Chadar^a, Soniya S. Rao^a, Shridhar P. Gejji^a, Bharat Ugale^b, C.M. Nagraja^b, Milind Nikalje^a and Sunita Salunke-Gawali^a*

Supplementary material

Synthesis of 1

1 g of menadione (5.80 mM) was taken in a round bottom flask. About 30 ml methanol was added to it just so that it dissolves. After stirring the solution on a magnetic stirrer for about 15 minutes, about 0.625 g of o-phenylenediamine (5.80 mM) was added to it. The reaction was refluxed for 30 hrs with constant stirring at 60-70°C. During this time the progress of the reaction was monitored using thin layer chromatography. The reaction mixture was transferred to a beaker and kept for 5 days for the solvent to evaporate. The solid crude product was obtained by evaporation. The crude product was purified by column chromatography using toluene: methanol (9.5:0.5) as eluent. Dark orange colored crystals obtained by slow evaporation the solvent (toluene).

General Materials and Methods

The materials used viz vitamin K3 (2-methyl-1,4-naphthoquinone), 2-aminophenol, Ophenelenediamine were purchased from Sigma-Aldrich. The solvents used such as toluene, methanol are of analytical grade were purchased from Merck Chemicals. Solvents were distilled by standard methods and dried wherever necessary. The FT-IR spectra of the compounds were recorded between 4000-400 cm⁻¹ as KBr pellets on SHIMADZU FT 8400 spectrometer. Mass of compound was determined by GC-MS 2010-eV (Make SHIMADZU). Melting points of compound were determined using melting point apparatus (Make-METTLER) and were corrected using DSC (Differential Scanning Calorimetry) (Make- TA Q2000). UV-Visible spectra of compound were recorded on SHIMADZU UV 1650 in DMSO between 200 to 800 nm. ¹H, ¹³CNMR and 2D gHSQCAD of compounds was recorded in CDCl₃ on Varian mercury 500 MHz NMR instrument; TMS (tetramethylsilane) was used as the internal reference. Elemental analysis was performed on Elementar Vario EL III.

Figure legends

Fig.S1	LC-MS spectra	of 1
0		

- Fig.S2 FT-IR spectrums of vitamin K3 in region 4000 cm⁻¹ to 400 cm⁻¹ (vitamin K3 = 2methyl-1,4-naphthaquinone)
- Fig.S3 FT-IR spectrums of **1** in region 4000 cm⁻¹ to 400 cm⁻¹
- Fig.S4 ¹Characteristic FT-IR frequencies of vitamin K3 and **1**. (a) v_{N-H} region (b) $v_{C=O}$ and v_{C-N} region
- Fig.S5 DSC plot of 1
- Fig.S6 a) 1 H, b) 13 C NMR spectra of 1
- Fig.S7 2D gHSQCAD NMR spectra of 1 of saturated carbon
- Fig.S8 2D gHSQCAD NMR spectra of 1 in aromatic region
- Fig.S9 UV-Visible spectra of vitamin K3 and 1 in DMSO with concentration $\sim 1 \times 10^{-4}$ M
- Fig.S10 HOMO and LUMO orbitals of 1 (Isosurface value of -17.5 kJ mol⁻¹)
- Fig.S11 Observed and optimized IR spectra of 1

Table legends

- Table S1Crystallographic data of 1
- Table S2Selected bond lengths (Å) and angles (°) for 1

LCMS REPOR1

Sample Information : Admin Acquired by Date Acquired : 9/17/2014 7:06:47 PM Sample Name : AP TT1-5 Sample ID : MD-12DA Data File : 075.lcd Method File : LCMS METHOD AR number Analysed By : LCMS-03-170914-75 Method:-METHOD Column :YMC TRIART ,50mm X4.6 mm.3 µ Mobile Phase: A. 5mM Ammonium Formate in water + 0.1% Ammonia B. Acetonitrile + 5% Solvent A + 0.1% Ammonia Inj Volume; .5µL, Flow Rate: 1.400 mL/minute Gradient program: 10% B to 95% B in 2.5 minute, Hold till 3.00 min At 4.00min B conc is 10 % hold up to 4.5 min

MS Chromatogram

BG Mode:Averaged 2.943-2.946(177-177) Mass Peaks:4 Base Peak:263.11(378398) Polarity:Pos Segment1 - Event1 100 263 50 24304 100 300 400 600 700 900 1000 1200 1400m/z

PDA Ch1	210nm - 400nm	4nm
		

Peak#	Ret. Time	Areo	A 0/
1	2.247	Alca	Area %
	3.347	1504	0.768
2	3.810	193068	98 537
3	3.915	1362	0.605
Total		105022	0.095
		195933	100.000

Fig.S1LC-MS spectra of 1

Fig.S2 FT-IR spectrums of Vitamin-K3 in region 4000 cm⁻¹ to 400 cm⁻¹

Fig.S3 FT-IR spectrums of 1 in region 4000 cm⁻¹ to 400 cm⁻¹

Fig.S4 Characteristic FT-IR frequencies of vitamin K3 and 1. (a) v $_{\rm N-H}$ region (b) v $_{\rm C=O}$ and v $_{\rm C-N}$ region

Fig.S5DSC plot of 1

(a)

Fig.S6 a) 1 H, b) 13 C NMR spectra of 1

Fig.S7 2D gHSQCAD NMR spectra of $\mathbf{1}$ in saturated carban region

Fig.S8 2D gHSQCAD NMR spectra of 1 for aromatic carbons

Interpretation of the 2D gHSQCAD NMR of 1 that shows the correlation between the Carbon and Proton.

Spot (1) show the correlation between the proton i.e. observed at 7.90 ppm (C1-H) in proton NMR and the carbon observed at 125.79ppm in carbon NMR.

Spot (2) show the correlation between the proton i.e. observed at 7.64 ppm (C-2H) in proton NMR and the carbon observed at 131.05 ppm in carbon NMR.

Spot (3) show the correlation between the proton i.e. observed at 7.78 ppm (C-3H) in proton NMR and the carbon observed at 134.28 ppm in carbon NMR.

Spot (4) show the correlation between the proton i.e. observed at 8.43 ppm (C4-H) in proton NMR and the carbon observed at 126.01 ppm in carbon NMR.

Spot (H6A) show the correlation between the proton i.e. observed at 3.40 ppm (C-6H axi) in proton NMR and the carbon observed at 51.37 ppm in carbon NMR.

Spot (H6B) show the correlation between the proton i.e. observed at 2.84 ppm (C4-H) in proton NMR and the carbon observed at 51.37 ppm in carbon NMR

Spot (8) show the correlation between the proton i.e. observed at 6.67 ppm (C8-H) in proton NMR and the carbon observed at 115.60 ppm in carbon NMR.

Spot (9) show the correlation between the proton i.e. observed at 6.69 ppm (C9-H) in proton NMR and the carbon observed at 117.79 ppm in carbon NMR.

Spot (10) show the correlation between the proton i.e. observed at 7.04 ppm (C11-H) in proton NMR and the carbon observed at 129.26 ppm in carbon NMR.

Spot (11) show the correlation between the proton i.e. observed at 7.25 ppm (C11-H) in proton NMR and the carbon observed at 127.74 ppm in carbon NMR.

Spot (13) show the correlation between the proton i.e. observed at 1.06 ppm (C13-H) in proton NMR and the carbon observed at 23.30 ppm in carbon NMR.

Fig.S9 UV-Visible spectra of MNQ and 1 in DMSO with concentration $\sim 1\times10^{-4}$ M

Fig.S10 HOMO and LUMO orbital's of 1 (Isosurface value of -17.5 kJ mol⁻¹)

Fig.S11 Observed and optimized IR spectra of 1

Parameters	1
Formula	C ₁₇ H ₁₄ N ₂ O
Formula weight	262.30
Crystal system	Orthorhombic
Space group	Pbca
a /Å	7.518(5)
b /Å	14.238(5)
c /Å	25.049(5)
α (°)	90.00
β (°)	90.00
$\gamma(^{\circ})$	90.00
$V(Å^3)$	2681(2)
Z	8
$\rho(\text{g cm}^{-3})$	1.300
$\mu(\text{mm}^{-1})$	0.082
F(000)	1104
T(K)	293
λ (Mo K _a)(Å)	0.71073
$\Theta_{\min}(^{\circ})$	2.9
$\Theta_{\max}(^{\circ})$	25.1
Total data	95214
Unique data	2381
R _{int}	0.043
Data[$I > 2\sigma(I)$]	2006
^a R ₁	0.0363
wR ₂	0.1115
S	0.87

 Table S1 Crystallographic data of 1

01-C5	1.217(2)	C3-C4-C4A	120.46(14)
N7-C6A	1.453(2)	C5-C4A-C12B	120.57(13)
N7-C7A	1.375(2)	C4-C4A-C12B	120.05(12)
N12-C11A	1.405(2)	C4-C4A-C5	119.36(13)
N12-C12A	1.285(2)	01-C5-C4A	121.79(14)
C1- C12B	1.393(2)	01-C5-C6	121.60(14)
C1- C2	1.372(2)	C4A-C5-C6	116.53(13)
C2-C3	1.380(2)	C5-C6-C6A	114.02(12)
C3-C4	1.371(3)	N7-C6A-C13	112.32(11)
C4-C4A	1.389(2)	C6-C6A-C12A	110.76(11)
C4A-C12B	1.404(2)	C6-C6A-C13	110.36(11)
C4A-C5	1.482(2)	C12A-C6A-C13	108.39(11)
C5-C6	1.492(2)	N7-C6A-C6	107.52(11)
C6-C6A	1.519(2)	N7-C6A-C12A	107.47(11)
C6A-C12A	1.521(2)	N7-C7A-C8	123.07(12)
C6A-C13	1.536(2)	C8-C7A-C11A	119.27(13)
C7A-C11A	1.406(2)	N7-C7A-C11A	117.45(12)
C7A-C8	1.388(2)	C7A-C8-C9	120.16(14)
C8-C9	1.379(2)	C8-C9-C10	120.79(15)
C9-C10	1.381(3)	C9-C10-C11	119.55(15)
	1	1	1

Table S2 Selected bond lengths (Å) and angles (°) for 1 $\,$

C10-C11	1.378(2)	C10-C11-C11A	120.75(15)
C11-C11A	1.388(2)	N12-C11A-C11	119.68(14)
C12A-C12B	1.473(2)	N12-C11A-C7A	120.73(13)
C6A-N7-C7A	118.16(12)	C7A-C11A-C11	119.44(13)
C11A-N12-C12A	118.49(12)	N12-C12A-C12B	119.42(12)
C7A-N7-H7N	118.1(10)	C6A-C12A-C12B	117.25(11)
C6A-N7-H7N	115.0(10)	N12-C12A-C6A	123.07(12)
C2-C1-C12B	120.68(13)	C4A-C12B-C12A	121.37(11)
C1-C2-C3	120.67(14)	C1-C12B-C4A	118.35(12)
C2- C3-C4	119.78(15)	C1-C12B-C12A	120.15(12)