Regioselective Synthesis of Vitamin K_{3} Based Dihydrobenzophenazine Derivative: Their Novel Crystal Structure and DFT Studies

Dattatray Chadar ${ }^{a}$, Soniya S. Rao ${ }^{a}$, Shridhar P. Gejji ${ }^{a}$, Bharat Ugale ${ }^{b}$, C.M. Nagraja ${ }^{b}$, Milind Nikalje a and Sunita Salunke-Gawalia*

Supplementary material

Synthesis of 1

1 g of menadione (5.80 mM) was taken in a round bottom flask. About 30 ml methanol was added to it just so that it dissolves. After stirring the solution on a magnetic stirrer for about 15 minutes, about 0.625 g of o-phenylenediamine (5.80 mM) was added to it. The reaction was refluxed for 30 hrs with constant stirring at $60-70^{\circ} \mathrm{C}$. During this time the progress of the reaction was monitored using thin layer chromatography. The reaction mixture was transferred to a beaker and kept for 5 days for the solvent to evaporate. The solid crude product was obtained by evaporation. The crude product was purified by column chromatography using toluene: methanol (9.5:0.5) as eluent. Dark orange colored crystals obtained by slow evaporation the solvent (toluene).

General Materials and Methods

The materials used viz vitamin K3 (2-methyl-1,4-naphthoquinone), 2-aminophenol, Ophenelenediamine were purchased from Sigma-Aldrich. The solvents used such as toluene, methanol are of analytical grade were purchased from Merck Chemicals. Solvents were distilled by standard methods and dried wherever necessary. The FT-IR spectra of the compounds were recorded between $4000-400 \mathrm{~cm}^{-1}$ as KBr pellets on SHIMADZU FT 8400 spectrometer. Mass of compound was determined by GC-MS 2010-eV (Make SHIMADZU). Melting points of compound were determined using melting point apparatus (Make-METTLER) and were corrected using DSC (Differential Scanning Calorimetry) (Make- TA Q2000). UV-Visible spectra of compound were recorded on SHIMADZU UV 1650 in DMSO between 200 to 800 $\mathrm{nm} .{ }^{1} \mathrm{H},{ }^{13} \mathrm{CNMR}$ and 2D gHSQCAD of compounds was recorded in CDCl_{3} on Varian mercury

500 MHz NMR instrument; TMS (tetramethylsilane) was used as the internal reference. Elemental analysis was performed on Elementar Vario EL III.

Figure legends

Fig.S1 LC-MS spectra of $\mathbf{1}$
Fig.S2 FT-IR spectrums of vitamin K3 in region $4000 \mathrm{~cm}^{-1}$ to $400 \mathrm{~cm}^{-1}$ (vitamin $\mathrm{K} 3=2$ -methyl-1,4-naphthaquinone)
Fig.S3 FT-IR spectrums of $\mathbf{1}$ in region $4000 \mathrm{~cm}^{-1}$ to $400 \mathrm{~cm}^{-}$

Fig.S4 ${ }^{1}$ Characteristic FT-IR frequencies of vitamin K3 and 1. (a) $v_{\mathrm{N}-\mathrm{H}}$ region
(b) $v_{\mathrm{C}=\mathrm{O}}$ and $v_{\mathrm{C}-\mathrm{N}}$ region

Fig.S5 DSC plot of $\mathbf{1}$
Fig.S6 a) ${ }^{1} \mathrm{H}, \mathrm{b}$) ${ }^{13} \mathrm{C}$ NMR spectra of 1
Fig.S7 2D gHSQCAD NMR spectra of $\mathbf{1}$ of saturated carbon
Fig.S8 2D gHSQCAD NMR spectra of $\mathbf{1}$ in aromatic region
Fig.S9 UV-Visible spectra of vitamin K3 and $\mathbf{1}$ in DMSO with concentration $\sim 1 \times 10^{-4} \mathrm{M}$
Fig.S10 HOMO and LUMO orbitals of 1 (Isosurface value of $-17.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$)
Fig.S11 Observed and optimized IR spectra of 1

Table legends

Table S1 Crystallographic data of $\mathbf{1}$
Table S2 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$

LCMS REPOR]

Sample Information

Acquired by Date Acquired Sample Name Sample ID Data File Method File AR number Analysed By
: Admin
: 9/17/2014 7:06:47 PM
: AP TT1-5
: MD-12DA
: 075.1cd
: LCMS METHOD

Method:-METHOD
Column :YMC TRIART, 50 mm X $4.6 \mathrm{~mm} .3 \mu$
Mobile Phase: A. 5 mM Ammonium Formate in water $+0.1 \%$ Ammonia
B. Acetonitrile $+5 \%$ Solvent A+0.1\% Ammonia

Inj Volume; . $5 \mu \mathrm{~L}$, Flow Rate: $1.400 \mathrm{~mL} /$ minute Gradient program:
$10 \% \mathrm{~B}$ to $95 \% \mathrm{~B}$ in 2.5 minute, Hold till 3.00 min
At $4.00 \mathrm{~min} B$ conc is 10% hold up to 4.5 min
Chromatogram
AP TT1-5 E: \backslash AMC \backslash LCMS $03 \backslash$ DATA $\backslash 2014 \backslash$ SEPT $\backslash 17 \backslash$ Sample $\backslash 075.1 \mathrm{~cd}$
mAU

PDA Multi $1 / 210 \mathrm{~nm}-400 \mathrm{~nm} 4 \mathrm{~nm}$
MS Chromatogram
AP TT1-5 E: \AMC $\backslash L C M S ~ 03 \backslash D A T A \backslash 2014 \backslash S E P T \backslash 17 \backslash$ Sample $\backslash 075$.lcd Segment\#1 (x1,000,000)

TIC@1

MS Spectrurn Graph
Ret. Time : 2.843 min
BG Mode:Averaged 2.943-2.946(177-177)
Mass Peaks:4 Base Peak:263.11(378398) Polarity:Pos Segmentl - Event 1

PeakTable

PDA Ch1 $210 \mathrm{~nm}-400 \mathrm{~nm} 4 \mathrm{~nm}$

Peak\#	Ret. Time	Area	Area $\%$
$\frac{1}{2}$	$\frac{3.347}{2}$	1504	0.768
$\frac{3.810}{3}$	193068	98.537	
Total	3.915	1362	0.695
	195933	100.000	

Fig.S1LC-MS spectra of 1

Fig.S2 FT-IR spectrums of Vitamin-K3 in region $4000 \mathrm{~cm}^{-1}$ to $400 \mathrm{~cm}^{-1}$

Fig.S3 FT-IR spectrums of $\mathbf{1}$ in region $4000 \mathrm{~cm}^{-1}$ to $400 \mathrm{~cm}^{-1}$

Fig.S4 Characteristic FT-IR frequencies of vitamin K3 and 1. (a) $v_{\mathrm{N}-\mathrm{H}}$ region (b) $v_{\mathrm{C}=\mathrm{O}}$ and $v_{\mathrm{C}-\mathrm{N}}$ region

Fig.S5DSC plot of 1

(b)

Fig.S6 a) $\left.{ }^{1} \mathrm{H}, \mathrm{b}\right){ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1}$

Fig.S7 2D gHSQCAD NMR spectra of $\mathbf{1}$ in saturated carban region

Fig.S8 2D gHSQCAD NMR spectra of $\mathbf{1}$ for aromatic carbons

Interpretation of the 2D gHSQCAD NMR of 1 that shows the correlation between the

 Carbon and Proton.Spot (1) show the correlation between the proton i.e. observed at $7.90 \mathrm{ppm}(\mathrm{C} 1-\mathrm{H})$ in proton NMR and the carbon observed at 125.79 ppm in carbon NMR.

Spot (2) show the correlation between the proton i.e. observed at $7.64 \mathrm{ppm}(\mathrm{C}-2 \mathrm{H})$ in proton NMR and the carbon observed at 131.05 ppm in carbon NMR.

Spot (3) show the correlation between the proton i.e. observed at $7.78 \mathrm{ppm}(\mathrm{C}-3 \mathrm{H})$ in proton NMR and the carbon observed at 134.28 ppm in carbon NMR.

Spot (4) show the correlation between the proton i.e. observed at $8.43 \mathrm{ppm}(\mathrm{C} 4-\mathrm{H})$ in proton NMR and the carbon observed at 126.01 ppm in carbon NMR.

Spot (H6A) show the correlation between the proton i.e. observed at $3.40 \mathrm{ppm}(\mathrm{C}-6 \mathrm{H} \mathrm{axi})$ in proton NMR and the carbon observed at 51.37 ppm in carbon NMR.

Spot (H6B) show the correlation between the proton i.e. observed at $2.84 \mathrm{ppm}(\mathrm{C} 4-\mathrm{H})$ in proton NMR and the carbon observed at 51.37 ppm in carbon NMR

Spot (8) show the correlation between the proton i.e. observed at $6.67 \mathrm{ppm}(\mathrm{C} 8-\mathrm{H})$ in proton NMR and the carbon observed at 115.60 ppm in carbon NMR.

Spot (9) show the correlation between the proton i.e. observed at $6.69 \mathrm{ppm}(\mathrm{C} 9-\mathrm{H})$ in proton NMR and the carbon observed at 117.79 ppm in carbon NMR.

Spot (10) show the correlation between the proton i.e. observed at $7.04 \mathrm{ppm}(\mathrm{C} 11-\mathrm{H})$ in proton NMR and the carbon observed at 129.26 ppm in carbon NMR.

Spot (11) show the correlation between the proton i.e. observed at $7.25 \mathrm{ppm}(\mathrm{C} 11-\mathrm{H})$ in proton NMR and the carbon observed at 127.74 ppm in carbon NMR.

Spot (13) show the correlation between the proton i.e. observed at $1.06 \mathrm{ppm}(\mathrm{C} 13-\mathrm{H})$ in proton NMR and the carbon observed at 23.30 ppm in carbon NMR.

Fig.S9 UV-Visible spectra of MNQ and $\mathbf{1}$ in DMSO with concentration $\sim 1 \times 10^{-4} \mathrm{M}$

Fig.S10 HOMO and LUMO orbital's of $\mathbf{1}$ (Isosurface value of $-17.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$)

Fig.S11 Observed and optimized IR spectra of $\mathbf{1}$

Table S1 Crystallographic data of 1

Parameters	$\mathbf{1}$
Formula	$\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$
Formula weight	262.30
Crystal system	Orthorhombic
Space group	Pbca
a / \AA	$7.518(5)$
b / \AA	$14.238(5)$
c / \AA	$25.049(5)$
$\alpha\left(^{\circ}\right)$	90.00
$\beta\left(^{\circ}\right)$	90.00
$\gamma\left({ }^{\circ}\right)$	90.00
$\mathrm{~V}\left(\AA^{3}\right)$	$2681(2)$
Z	8
$\rho\left(\mathrm{~g} \mathrm{~cm}^{-3}\right)$	1.300
$\mu\left(\mathrm{~mm}^{-1}\right)$	0.082
$F(000)$	1104
$\mathrm{~T}(\mathrm{~K})$	293
$\lambda\left(\mathrm{Mo} \mathrm{K}_{\alpha}\right)(\AA)$	0.71073
$\Theta_{\min }\left({ }^{\circ}\right)$	2.9
$\Theta_{\max }\left({ }^{\circ}\right)$	25.1
Total data	95214
Unique data	2381
$R_{\text {int }}$	0.043
Data[I>2o(I)]	2006
${ }^{\mathrm{a}} \mathrm{R}_{1}$	0.0363
$w \mathrm{R}_{2}$	0.1115
S	0.87

Table S2 Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$

O1-C5	1.217(2)	C3-C4-C4A	120.46(14)
N7-C6A	1.453(2)	C5-C4A-C12B	120.57(13)
N7-C7A	1.375(2)	C4-C4A-C12B	120.05(12)
N12-C11A	1.405(2)	C4-C4A-C5	119.36(13)
N12-C12A	1.285(2)	O1-C5-C4A	121.79(14)
C1- C12B	1.393(2)	O1-C5-C6	121.60(14)
C1- C2	1.372(2)	C4A-C5-C6	116.53(13)
C2-C3	1.380(2)	C5-C6-C6A	114.02(12)
C3-C4	1.371(3)	N7-C6A-C13	112.32(11)
C4-C4A	1.389(2)	C6-C6A-C12A	110.76(11)
C4A-C12B	1.404(2)	C6-C6A-C13	110.36(11)
C4A-C5	1.482(2)	C12A-C6A-C13	108.39(11)
C5-C6	1.492(2)	N7-C6A-C6	107.52(11)
C6-C6A	1.519(2)	N7-C6A-C12A	107.47(11)
C6A-C12A	1.521(2)	N7-C7A-C8	123.07(12)
C6A-C13	1.536(2)	C8-C7A-C11A	119.27(13)
C7A-C11A	1.406(2)	N7-C7A-C11A	117.45(12)
C7A-C8	1.388(2)	C7A-C8-C9	120.16(14)
C8-C9	1.379(2)	C8-C9-C10	120.79(15)
C9-C10	1.381(3)	C9-C10-C11	119.55(15)

C10-C11	$1.378(2)$	C10-C11-C11A	$120.75(15)$
C11-C11A	$1.388(2)$	N12-C11A-C11	$119.68(14)$
C12A-C12B	$1.473(2)$	N12-C11A-C7A	$120.73(13)$
C6A-N7-C7A	$118.16(12)$	C7A-C11A-C11	$119.44(13)$
C11A-N12-C12A	$118.49(12)$	N12-C12A-C12B	$119.42(12)$
C7A-N7-H7N	$118.1(10)$	C6A-C12A-C12B	$117.25(11)$
C6A-N7-H7N	$115.0(10)$	N12-C12A-C6A	$123.07(12)$
C2-C1-C12B	$120.68(13)$	C4A-C12B-C12A	$121.37(11)$
C1-C2-C3	$120.67(14)$	C1-C12B-C4A	$118.35(12)$
C2- C3-C4	$119.78(15)$	C1-C12B-C12A	$120.15(12)$

