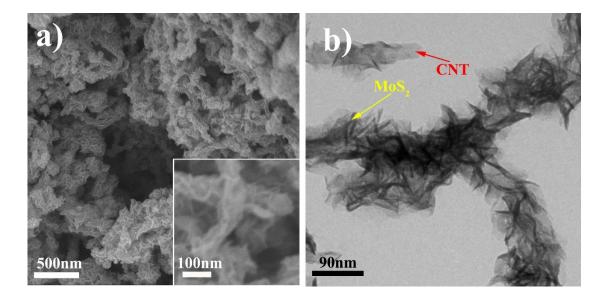
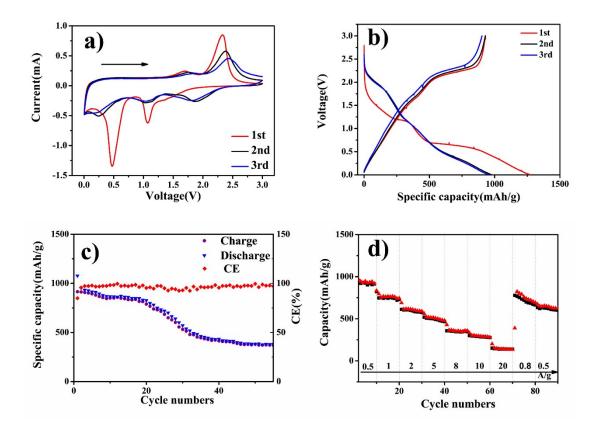
Supporting information

MoS₂-GNS-CNT 3D Hybrids with Excellent Electrochemical


Performances for Lithium Ion Batteries

Fusen Pan,^a Jiaqing Wang,^a Zhenzhong Yang,^b Lin Gu^b, Yan Yu^{*,a}


^a Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province, 230026, China.

E-mail: yanyumse@ustc.edu.cn

^b Beijing Laboratory for Electron Microscopy, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing, 100190, China.

Fig. S1: (a) SEM images of MoS_2 -CNT at different magnifications. The inset in (a) is the high magnification of MoS_2 -CNT. (b) TEM image of MoS_2 -CNT.

Fig. S2: (a) The CV curve of MoS_2 -CNT composite at a scanning rate of 0.2 mV/s. (b) Charge-discharge profile for the first three cycles at a current density of 0.5 A/g for MoS_2 -CNT composite. (c) Cycling behavior of MoS_2 -CNT electrode at a current density of 0.5 A/g. (d) Rate capability of MoS_2 -CNT electrode at various current densities.