Supporting Information

Iodine Catalyzed Intramolecular C(Sp3)-H Functionalization: Synthesis of 2, 5-disubstituted Oxazoles from N-arylethylamides

Supravat Samanta ^a, Ramachandra Reddy Donthiri ^a, Milan Dinda^a, and Subbarayappa Adimurthy^{*}

^aAcademy of Scientific & Innovative Research, CSIR–Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar-364 002. Gujarat (INDIA)

General Experimental section	S2-S3
Characterization data of all the Products	S3-S14
Copies of ¹ H & ¹³ C- NMR for all the products	S15-S47
Copies of HRMS for new products	S45-S51

Table of Contents:

Experimental Section:

General: All commercially available chemicals and reagents were used without any further purification unless otherwise indicated. Acetonitrile was dried with CaH, distilled, and stored with molecular sieves. ¹H and ¹³C NMR spectra were recorded at 500 and 125 MHz, respectively. The spectra were recorded in CDCl₃ as solvent. Multiplicity was indicated as follows: s (singlet); d (doublet); t (triplet); m (multiplet); dd (doublet of doublets), etc. and coupling constants (J) were given in Hz. Chemical shifts are reported in ppm relative to TMS as an internal standard. The peaks around delta values of ¹H NMR (7.26), and ¹³C NMR (77.0) are corresponding to the solvent CDCl₃. All products were purified through column chromatography using silica gel 100-200 mesh size using ethyl acetate /hexane as an eluent.

General procedure for the preparation of starting corresponding amides 1a-r and 1v-ae:

1.0 mmol of 2-phenylethylamine, 1.2 mmol of triethylamine and catalytic amount (5 mol%) of DIMAP were dissolved in 5 mL DCM solvent and cooled in ice bath. Then 1.2 mmol of benzoyl chloride was added drop wise and after complete the addition, it was allowed to react at room temperature under stirring for 2 h. After completion of the reaction (monitored by TLC), water was added under stirring for 5 minutes. The DCM layer was separated, dried over anhydrous Na₂SO₄. Removal of solvent gives white solid N-phenethylbenzamide (**1a**) 95 % yield. Same procedure has been followed for other starting materials (**1b-r** and **1v-ae**).

General procedure for the preparation of starting corresponding amides 1s-u¹:

2 mmol of 2-phenylethylamine, 1.0 mmol of picolinamide and chitosan (20 wt. %; 24 mg) was stirred at 150°C temperature for 36 h. After the completion of the reaction (monitored by TLC), cooled to room temperature and the reaction mixture was dissolved with DCM (15 mL). After removal of solvent, the crude reaction mixture left out was purified by column chromatography (eluted with dichloromethane and ethyl acetate) using silica gel (200-400 mesh) to obtain 64% of N-phenethylpicolinamide (**1t**). Same procedure has been followed for other starting materials (**1t-u**)

A typical experimental procedure for the synthesis of 2, 5-disubstituted Oxazoles (2a):

In a sealed tube, 45 mg (0.2 mmol) of N-phenethylbenzamide (1a), I2 (0.04 mmol) 10 mg were added in 1 mL of dry acetonitrile and the tube was closed with rubber septum. initially 120 μ L (3 equiv) of TBHP (5 – 6M decane solution) was added through a syringe. Then the sealed tube was heated to 100°C under stirring and the rest of the 80 μ L (2 equiv) of TBHP was added to the reaction mixture after 18 h. After complete addition of TBHP the reaction was continued another 18 h. After the completion of the reaction, reaction mixture was cooled to room temperature and added water, extracted the organic portion with DCM (2x10 mL) and dried with anhydrous sodium sulphate. After removing the solvent, the crude product left out was purified by column chromatography on silica gel (100-200 mesh) using ethyl acetate/ hexane mixture as eluent.

2,5-diphenyloxazole $(2a)^2$:

Yield (30.0 mg, 68%); ¹H NMR (500 MHz, CDCl₃): δ 8.12 - 8.10 (m, 2H), 7.72 (d, *J* = 7.5 Hz, 2H), 7.50 - 7.42 (m, 6H), 7.35 (t, *J* = 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): 155.9, 146.0, 125.1, 123.7, 123.6, 123.2, 122.8, 121.1, 119.0, 118.2.

5-(4-bromophenyl)-2-phenyloxazole (**2b**)³:

Yield (38 mg, 63%); ¹H NMR (500 MHz, CDCl₃): δ 8.10 - 8.08 (m, 2H), 7.59 - 7.57 (m, 4H), 7.49 - 7.46 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): 161.4, 150.3, 132.5, 130.5,128.8, 127.1, 126.9, 126.3, 125.6, 123.9, 122.3.

5-(4-chlorophenyl)-2-phenyloxazole (2c)²:

Yield (34 mg, 67%); ¹H NMR (500 MHz, CDCl₃): δ 8.10 - 8.09 (m, 2H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.49 - 7.48 (m, 3H), 7.45 (t, *J* = 8.5 Hz , 3H); ¹³C NMR (125 MHz, CDCl₃): 162.0, 150.2, 134.2, 130.5, 129.2, 128.8, 127.2, 126.4, 126.3, 125.4, 123.7.

 $5-(4-fluorophenyl)-2-phenyloxazole (2d)^4$:

Yield (35 mg, 74%); ¹H NMR (500 MHz, CDCl₃): δ 8.10 - 8.09 (m, 2H), 7.71 - 7.69 (m, 2H), 7.49 (d, J = 7.0 Hz, 3H), 7.39 (s, 1H), 7.16 (t, J = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): 163.6, 161.7, 161.1, 150.4, 130.4, 128.8, 127.2, 126.2, 126.1, 126.0, 124.3, 123.0, 116.2, 116.0.

 $5-(2-methoxyphenyl)-2-phenyloxazole (2e)^3$:

Yield (21 mg, 42%); ¹H NMR (500 MHz, CDCl₃): δ 8.08 (s, 2H), 7.87 (d, J = 7.5 Hz, 1H), 7.73 (s, 1H), 7.44 (s, 3H), 7.34 (t, J = 7.5 Hz, 1H), 7.09 (t, J = 7.5 Hz, 1H), 7.01 (d, J = 8.0 Hz, 1H), 3.99 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 159.1, 154.7, 146.8, 129.3, 128.2, 127.7, 126.3, 125.5, 124.7, 119.8, 109.9, 54.4.

2-phenyl-5-(pyridin-2-yl)oxazole $(2f)^5$:

Yield (21 mg, 48%); ¹H NMR (500 MHz, CDCl₃): δ 8.63 – 8.62 (m, 1H), 8.08 – 8.06 (m, 2H), 7.77 (s, 1H), 7.74 (t, *J* = 8.0 Hz, 1H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.41 – 7.40 (m, 3H), 7.19 – 7.17 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): 162.0, 150.4, 149.7, 147.0, 137.1, 133.0, 130.7, 129.9, 128.8, 128.3, 127.0, 126.5, 122.9, 119.2.

 $2-(2-fluorophenyl)-5-phenyloxazole (2g)^6$:

Yield (34.5 mg, 72%); ¹H NMR (500 MHz, CDCl₃): δ 8.12 (t, *J* = 7.0 Hz, 1H), 7.75 (d, *J* = 7.5 Hz, 1H), 7.51 (s, 1H), 7.46 (t, *J* = 8.0 Hz, 2H), 7.38 – 7.34 (m, 1H), 7.30 – 7.21 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): 161.6, 161.0, 158.9, 157.5, 157.4, 151.4, 131.9, 131.8, 129.8, 129.3, 128.9, 128.6, 128.3, 127.7, 124.3, 123.3, 116.9, 116.8.

2-(3-bromophenyl)-5-phenyloxazole (**2h**)⁷:

Yield (37 mg, 62%); ¹H NMR (500 MHz, CDCl₃): δ 8.25 (s, 1H), 8.04 (d, *J* = 8.0 Hz, 1H), 7.73 (d, *J* = 7.5 Hz, 2H), 7.59 (d, *J* = 8.0 Hz, 1H), 7.47 – 7.44 (m, 3H), 7.37 – 7.34 (m, 2H); ¹³C NMR (125 MHz, CDCl₃): 158.6, 150.7, 132.1, 129.3, 128.1, 127.9, 127.6, 126.7, 123.7, 123.2, 122.5, 121.9.

2-(3-chlorophenyl)-5-phenyloxazole (2i)³:

Yield (33 mg, 64%); ¹H NMR (500 MHz, CDCl₃): δ 8.11 – 8.09 (m, 1H), 8.00 – 7.99 (m, 1H), 7.73 (d, J = 8.0 Hz, 2H), 7.47 – 7.42 (m, 5H), 7.38 (t, J = 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): 159.7, 151.7, 134.9, 130.3, 130.1, 129.0, 128.7, 126.2, 124.3, 123.5.

 $2-(3-fluorophenyl)-5-phenyloxazole (2j)^7$:

Yield (34.5 mg, 72%); ¹H NMR (500 MHz, CDCl₃): δ 7.90 (d, J = 7.5 Hz, 1H), 7.80 – 7.78 (m, 1H), 7.73 (d, J = 7.5 Hz, 2H), 7.47 – 7.44 (m, 4H), 7.37 (t, J = 7.5 Hz, 1H), 7.17 – 7.14 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): 163.9, 161.9, 159.9, 151.6, 130.6, 130.5, 129.0, 128.7, 127.7, 124.2, 123.5, 121.9, 117.3, 117.2, 113.3, 113.1.

 $2-(4-bromophenyl)-5-phenyloxazole (2k)^8$:

Yield (36 mg, 60%); ¹H NMR (500 MHz, CDCl₃): δ 7.98 (d, J = 8.5 Hz, 2H), 7.72 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 8.5 Hz, 2H), 7.46 – 7.43 (m, 3H), 7.37 (t, J = 7.0 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): 160.2, 151.5, 132.0, 128.9, 128.6, 128.4, 127.8, 127.7, 124.7, 124.2, 123.5.

2-(4-chlorophenyl)-5-phenyloxazole (21)²:

Yield (33 mg, 64%); ¹H NMR (500 MHz, CDCl₃): δ 8.04 (d, J = 9.0 Hz, 2H), 7.71 (d, J = 7.5 Hz, 2H), 7.46 – 7.43 (m, 5H), 7.36 (t, J = 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): 160.2, 151.5, 136.4, 129.1, 128.9, 128.6, 127.7, 127.5, 125.9, 124.2, 123.5.

 $2-(4-fluorophenyl)-5-phenyloxazole (2m)^2$:

Yield (36 mg, 76%); ¹H NMR (500 MHz, CDCl₃): δ 8.11 – 8.09 (m, 2H), 7.72 (d, *J* = 8.0 Hz, 2H), 7.46 (t, *J* = 7.5 Hz, 3H), 7.36 (t, *J* = 7.5 Hz, 1H), 7.19 (t, *J* = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): 165.0, 163.0, 160.3, 151.3, 128.9, 128.5, 128.4, 128.3, 127.8, 124.1, 123.3, 116.1, 115.9.

2-(4-nitrophenyl)-5-phenyloxazole (2n)²:

Yield (39 mg, 74%); ¹H NMR (500 MHz, CDCl₃): δ 8.35 (d, J = 8.0 Hz, 2H), 8.27 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 7.5 Hz, 2H), 7.53 (s, 1H), 7.49 (t, J = 7.5 Hz, 2H), 7.41 (t, J = 7.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): 158.9, 152.8, 148.5, 132.8, 129.2, 129.1, 127.3, 126.8, 124.5, 124.2.

5-phenyl-2-(4-(trifluoromethyl)phenyl)oxazole (20)²:

Yield (40 mg, 69%); ¹H NMR (500 MHz, CDCl₃): δ 8.22 (d, *J* = 8.0 Hz, 2H), 7.75 – 7.73 (m, 4H), 7.48 – 7.44 (m, 3H), 7.39 – 7.35 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): 159.7, 152.1, 131.9, 131.7, 130.5, 129.8, 129.0, 128.8, 128.7, 128.5, 127.6, 127.4, 126.4, 125.8, 124.3, 123.7, 122.7.

5-phenyl-2-(p-tolyl)oxazole $(2p)^2$:

Yield (25 mg, 53%); ¹H NMR (500 MHz, CDCl₃): δ 8.00 (d, J = 7.5 Hz, 2H), 7.72 (d, J = 7.5 Hz, 2H), 7.45 – 7.42 (m, 3H), 7.35 (t, J = 7.5 Hz, 1H), 7.29 (d, J = 8.0 Hz, 2H), 2.41 (s, 3H); ¹³C

NMR (125 MHz, CDCl₃): 149.9, 139.6, 128.5, 127.8, 127.2, 127.0, 125.2, 123.7, 123.1, 122.2, 20.4.

 $2-(4-methoxyphenyl)-5-phenyloxazole (2q)^2$:

Yield (25.5 mg, 51%); ¹H NMR (500 MHz, CDCl₃): δ 8.05 (d, *J* = 9.0 Hz, 2H), 7.71 (d, *J* = 7.0 Hz, 2H), 7.45 – 7.41 (m, 3H), 7.34 (t, *J* = 7.5 Hz, 1H), 7.00 – 6.98 (m, 2H), 3.87 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): 160.3, 160.2, 149.7, 127.8, 127.1, 126.9, 123.0, 122.1, 119.2, 113.2, 54.3.

5-phenyl-2-(thiophen-2-yl)oxazole $(2r)^2$:

Yield (25 mg, 56%); ¹H NMR (500 MHz, CDCl₃): δ 7.75 – 7.74 (m, 1H), 7.70 (d, *J* = 8.0 Hz, 2H), 7.45 – 7.42 (m, 3H), 7.39 (s, 1H), 7.35 – 7.32 (m, 1H), 7.15 – 7.13 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): 157.4, 150.8, 130.0, 128.9, 128.6, 128.4, 128.2, 127.9, 127.7, 127.6, 124.1, 123.3.

5-phenyl-2-(pyridin-2-yl)oxazole $(2s)^4$:

Yield (17.5 mg, 39%); ¹H NMR (500 MHz, CDCl₃): δ 8.60 – 8.58 (m, 1H), 8.21 (d, *J* = 7.5 Hz, 1H), 7.88 – 7.81 (m, 3H), 7.53 (d, *J* = 6.5 Hz, 1H), 7.47 (d, *J* = 7.0 Hz, 3H), 7.40 (t, *J* = 6.5 Hz, 1H); ¹³C NMR (125 MHz, CDCl₃): 160.1, 153.1, 149.4, 146.0, 137.3, 128.7, 128.6, 127.3, 126.5, 124.7, 124.6, 122.4.

5-phenyl-2-(pyridin-3-yl)oxazole (**2t**)⁸:

Yield (20.5 mg, 46%); ¹H NMR (500 MHz, CDCl₃): δ 9.35 (s, 1H), 8.71 – 8.70 (m, 1H), 8.39 (d, *J* = 8.0 Hz, 1H), 8.11 (d, *J* = 8.5 Hz, 1H), 7.74 (d, *J* = 8.5 Hz, 2H) 7.49 – 7.43 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): 158.6, 152.0, 150.7, 147.3, 133.5, 133.2, 130.0, 129.0, 128.8, 128.7, 128.3, 127.5, 124.3, 123.7, 123.6.

5-phenyl-2-(pyridin-4-yl)oxazole $(2\mathbf{u})^9$:

Yield (18 mg, 41%); ¹H NMR (500 MHz, CDCl3): δ 8.73 (d, J = 6.0 Hz, 2H), 7.91 (d, J = 6.0 Hz, 2H), 7.71 (d, J = 9.0 Hz, 2H), 7.49 (s, 1H), 7.43 – 7.41 (m, 2H), 7.36 (t, J = 7.5 Hz, 1H) ¹³C NMR (125 MHz, CDCl₃): 161.4, 154.0, 150.5, 134.2, 132.4, 132.0, 130.8, 129.1, 129.0, 128.82, 128.8,128.7, 128.6, 127.3, 124.5, 124.0, 119.8.

2-cyclohexyl-5-phenyloxazole $(2v)^2$:

Yield (23.6 mg, 52%);¹H NMR (500 MHz, CDCl3): δ 7.58-7.53(m, 2H), 7.35 – 7.33 (m, 2H), 7.25 – 7.23 (m, 1H), 7.19 (s, 1H), 2.81 – 2.75 (m,1H), 2.06 – 2.04 (m,2H), 1.79 – 1.76 (m, 2H), 1.58 – 1.52 (m, 3H), 1.36 – 1.30 (m, 3H); ¹³C NMR (125 MHz, CDCl3): 168.3, 149.7, 129.2, 128.9, 128.6, 124.1, 121.9, 37.7, 30.7, 25.9, 25.7.

2-(tert-butyl)-5-phenyloxazole $(2w)^2$:

Yield (26 mg, 64%); ¹H NMR (500 MHz, CDCl₃): δ 7.62 (d, J = 7.5 Hz, 2H), 7.41 (t, J = 7.5 Hz, 2H), 7.31 (d, J = 7.5 Hz, 1H), 7.20 (s, 1H), 1.44 (s, 9H); ¹³C NMR (125 MHz, CDCl₃): 170.8, 150.6, 128.7, 128.5, 128.4, 128.0, 123.9, 121.4, 33.8, 28.6.

5-(4-chlorophenyl)-2-(2-fluorophenyl)oxazole (2x):

Yield (43 mg, 78%, White solid); ¹H NMR (500 MHz, CDCl₃): δ 8.11 – 8.07 (m, 1H), 7.67 (d, *J* = 8.0 Hz, 1H), 7.50 – 7.47 (m, 1H), 7.43 (d, *J* = 8.5 Hz, 1H), 7.29 – 7.22 (m, 4H), 7.12 – 7.08 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): 161.7, 161.0, 159.7, 159.0, 157.7, 150.5, 134.0, 133.7, 133.6, 132.2, 131.1, 129.3, 129.2, 128.5, 125.5, 123.7, 117.0, 116.8, 116.2, 116.0. HRMS-calculated for C₁₅H₁₀NOFCl= 274.0435; found 274.0429.

5-(4-bromophenyl)-2-(4-(trifluoromethyl)phenyl)oxazole (2y):

Yield (48 mg, 65%, White solid); ¹H NMR (500 MHz, CDCl₃): δ 8.20 (d, J = 8.5 Hz, 2H), 7.74 (d, J = 8.5 Hz, 2H), 7.58 (s, 4H), 7.48 (s, 1H); ¹³C NMR (125 MHz, CDCl₃): 154.7, 154.9, 127.2, 127.0, 126.9, 126.6, 125.1, 121.3, 120.7, 120.5, 119.7, 119.0, 117.6, 117.5. HRMS-calculated for C₁₆H₁₀NOF₃Br= 367.9898; found 367.9887.

2,5-bis(4-fluorophenyl)oxazole $(2z)^4$:

Yield (36 mg, 70%); ¹H NMR (500 MHz, CDCl₃): δ 8.10 – 8.07 (m, 2H), 7.70 – 7.67 (m, 2H), 7.37 (s, 1H), 7.19 – 7.13 (m, 4H); ¹³C NMR (125 MHz, CDCl₃): 165.0, 163.6, 163.0, 161.7, 160.3, 150.5, 128.4, 128.3, 126.1, 126.0, 124.2, 123.6, 123.0, 116.2, 116.1, 116.0, 115.9.

2,5-bis(4-chlorophenyl)oxazole (**2aa**)¹⁰:

Yield (39.5 mg, 68%, White solid); ¹H NMR (500 MHz, CDCl₃): δ 8.03 (d, *J* = 8.5 Hz, 2H), 7.64 (d, *J* = 8.5 Hz, 2H), 7.46 – 7.41 (m, 5H); ¹³C NMR (125 MHz, CDCl₃): 160.4, 150.5, 136.6, 134.4, 129.3, 129.2, 127.5, 126.2, 125.4, 123.8. HRMS- calculated for C₁₅H₁₀NOCl₂ = 290.0139; found 290.0139.

5-(4-bromophenyl)-2-(4-chlorophenyl)oxazole (**2ab**)⁹:

Yield (43.5 mg, 65%, Yellow solid); ¹H NMR (500 MHz, CDCl₃): δ 8.03 (d, J = 7.5 Hz, 2H), 7.61 – 7.57 (m, 4H), 7.46 – 7.45 (m, 3H); ¹³C NMR (125 MHz, CDCl₃): 160.4, 150.5, 136.6, 132.2, 131.8, 131.6, 129.4, 129.3, 129.2, 127.5, 126.6, 125.6, 123.9, 122.5. HRMS- calculated for C₁₅H₁₀NOClBr = 333.9634; found 333.9644

5-(4-bromophenyl)-2-(4-fluorophenyl)oxazole (**2ac**):

Yield (41 mg, 65%, White solid); ¹H NMR (500 MHz, CDCl₃): δ 8.09 – 8.07 (m, 2H), 7.60 – 7.56 (m, 4H), 7.42 (s, 1H), 7.18 (t, *J* = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): 165.1, 163.1, 160.5, 150.3, 132.1, 131.7, 128.5, 128.4, 126.8, 125.6, 123.8, 123.6, 122.3, 116.1, 116.0. HRMS-calculated for C₁₅H₁₀NOFBr = 317.9930; found 317.9915.

5-(4-chlorophenyl)-2-(4-fluorophenyl)oxazole (2ad):

Yield (37 mg, 67%, White solid); ¹H NMR (500 MHz, CDCl₃): δ 8.10 – 8.07 (m, 2H), 7.64 (d, *J* = 8.5 Hz, 2H), 7.43 – 7.41 (m, 3H), 7.19 (t, *J* = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): 165.1, 163.1, 160.5, 150.3, 134.2, 130.5, 129.2, 128.5, 128.4, 126.3, 125.3, 123.7, 116.1. 116.0. HRMS- calculated for C₁₅H₁₀NOFCl = 274.0435; found 274.0424

5-(4-chlorophenyl)-2-(4-(trifluoromethyl)phenyl)oxazole (2ae):

Yield (41.5 mg, 64%, Yellow solid); ¹H NMR (500 MHz, CDCl₃): δ 8.21 (d, J = 8.5 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 8.5 Hz, 2H), 7.48 (s, 1H), 7.44 (d, J = 8.5 Hz, 2H); ¹³C NMR (125 MHz, CDCl₃): 159.9, 151.1, 134.6, 131.5, 130.3, 129.3, 128.8, 126.5, 126.1, 126.0, 125.9, 125.5, 124.1. HRMS- calculated for C₁₆H₁₀NOF₃Cl = 324.0403; found 324.0406.

5-hexyl-2-phenyloxazole (**2af**)¹¹:

Yield (13 mg, 28%); ¹H NMR (500 MHz, CDCl₃): δ 7.99 (d, J = 6.5 Hz, 2H), 7.45 – 4.41(m, 3H), 6.83 (s, 1H), 2.71 (t, J = 7.5 Hz, 2H), 1.71– 1.66 (m, 2H) 1.41 – 1.37 (m, 2H), 1.33 – 1.32(m, 4H), 0.89 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): 160.5, 153.2, 129.8, 128.6, 127.8, 125.9, 123.5, 31.4, 28.7, 27.5, 25.6, 22.5, 14.0.

5-octyl-2-phenyloxazole $(2ag)^2$:

Yield (13 mg, 25%,); ¹H NMR (500 MHz, CDCl₃): δ 7.98 (d, J = 6.5 Hz, 2H), 7.43 – 4.39(m, 3H), 6.82 (s, 1H), 2.69 (t, J = 7.5 Hz, 2H), 1.71– 1.65 (m, 2H) 1.39 – 1.35 (m, 2H), 1.32 – 1.28 (m, 8H), 0.88 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): 160.5, 153.2, 129.8, 128.6, 127.8, 125.9, 123.5, 31.4, 29.2, 29.1, 29.0,27.6, 25.6, 22.6, 14.0.

References:

1. S. N. Rao, D. C. Mohan and S. Adimurthy, Green Chem., 2014, 16, 4122.

2. C. W. Cheung and S. L. Buchwald, J. Org. Chem., 2012, 77, 7526.

3. H. Jiang, H. Huang, H. Cao and C. Qi, Org. Lett., 2010, 12, 5561.

4. X. -B. Shen, Y. Zhang, W. -X. Chen, Z. -K. Xiao, T. -T. Hu and L. -X. Shao, *Org. Lett.*, 2014, **16**, 1984.

5. S. Bátoria, D. Döppa, and A. Messmer, Tetrahedron, 1994, 50, 4699.

6. I. Schiketanz, A. Schiketanz, M. D. Gheorghiu, M. Pascu, A.Vasile and A. T. Balaban, *Rev. Roum. Chim.*, 1985, **30**, 969.

7. D. Liua, J. Yub and J. Chenga, Tetrahedron., 2014, 70, 1149.

8. C. Wan, L. Gao, Q. Wang, J. Zhang, and Z. Wang. Org. Lett. 2010, 12, 3902.

9. Q. -H. Gao, Z. Fei, Y. -P. Zhu, M. Lian, F. -C. Jia, M. -C. Liu, N.-F. She and A. -X. Wu, *Tetrahedron.*, 2013, **69**, 22.

10. H. A. Samimi, and S. Entezami, Journal of Chemical Research., 2013, 37,745.

11. K. Schuh and F. Glorius, Synthesis, 2007, 15, 2297.

Copies of ¹H & ¹³C- NMR

¹³C NMR of 2a

¹³C NMR of 2b

¹³C NMR of 2c

¹³C NMR of 2d

¹³C NMR of 2g

¹³C NMR of 2i

¹³C NMR of 2j

¹³C NMR of 2k

¹³C NMR of 2l

¹³C NMR of 2m

¹³C NMR of 2n

¹³C NMR of 2p

¹³C NMR of 2q

¹³C NMR of 2r

¹³C NMR of 2t

¹³C NMR of 2u

¹³C NMR of 2w

¹³C NMR of 2x

¹³C NMR of 2y

¹³C NMR of 2aa

¹³C NMR of 2ab

¹³C NMR of 2ac

¹³C NMR of 2ad

¹³C NMR of 2ae

Page 1

Monoisotopic Mass, Even Electron Ions 25 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-17 H: 0-10 N: 0-1 O: 0-1 F: 0-3 Br: 0-1

HRMS of 2y

Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

HRMS of 2aa

Elemental Composition Report Page 1 Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3 Monoisotopic Mass, Even Electron Ions 12 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-16 H: 0-10 N: 0-1 O: 0-1 CI: 0-1 Br: 0-1 SS 771 7 (0.097) 1: TOF MS ES+ 6.24e+001 333.9644 100 % 0 _____ m/z 333.700 333.800 333.900 334.000 334.100 334.200 Minimum: -1.5 50.0 Maximum: 5.0 Mass Calc. Mass mDa PPM DBE i-FIT Fornula 333.9644 333,9634 1.0 3.0 10.5 n/a C15 H10 N O C1 Br

HRMS of 2ab

Page 1

Single Mass Analysis Tolerance = 50.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Odd and Even Electron Ions 25 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass) Elements Used: C: 0-16 H: 0-10 N: 0-1 O: 0-1 F: 0-1 Si: 0-1 Br: 0-1

HRMS of 2ac

HRMS of 2ad

Page 1

HRMS of the reaction mixture using TEMPO (3):

