Supporting Information

Evaluation of Imidazolium-based Ionic Liquids towards

Vermicidal Activity: In vitro & In silico studies

K. T. Prabhu Charan¹, Prabodh Ranjan², Kasina Manojkumar¹, Nellepalli Pothanagandhi¹, Prakash C. Jha², Vijay M. Khedkar³, Akella Sivaramakrishna¹, Kari Vijayakrishna^{1,*}

> *Corresponding author: Kari Vijayakrishna, Telephone: +91 416 224 2334 Fax: +91 416 224 3092, *E-mail ID:* kari@vit.ac.in

¹Organic Chemistry Division, School of Advanced Sciences, VIT University, Vellore-632014, Tamil Nadu, India. ²School of Chemical Sciences, Central University of Gujarat, Sector-30, Gandhinagar-38200, Gujarat, India.

³Combi-Chem Bioresource Centre, CSIR-National Chemical Laboratory, Pune, 411008, India.

Spectral details of the synthesized ILs

The ¹H NMR and mass spectral data of the synthesized ILs were given bellow and the data is matching with literature reports (see supporting information for ¹H NMR and mass spectra of the synthesized ILs).

1-Ethyl-3-methylimidazolium bromide [EMIM]Br, Golden yellow flakes when it is dry, hygroscopic in nature. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 9.66 (1 H, s, N-C<u>H</u>-N), 7.36 (2 H, dq, *J* 6.2, 2.1, NC<u>H</u>CHN), 4.03 (2 H, q, *J* 7.4, N-C<u>H</u>₂CH₃), 3.72 (3 H, d, *J* 2.2, N-C<u>H</u>₃), 1.20 (3 H, t, *J* 7.4, CH₂-C<u>H</u>₃). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 133.79, 121.44, 119.98, 42.59, 34.33, 13.46. LC-MS: 111.1(M+-Br), 83.2 (M+-Br-C₂H₅).

1-Ethyl-3-methylimidazolium hydroxide [*EMIM*]*OH*, Golden yellow liquid. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 10.23 (1 H, s, N-C<u>H</u>-N), 7.57 (2 H, dt, *J* 6.0, 1.9, NC<u>H</u>C<u>H</u>N), 4.41 (2 H, q, *J* 7.4, N-C<u>H</u>₂CH₃), 4.11 (3 H, d, *J* 1.5, NC<u>H</u>₃), 1.60 (3 H, td, *J* 7.4, 1.4, CH₂-C<u>H</u>₃).¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 135.02, 122.49, 120.92, 43.78, 35.32, 14.42. LC-MS: 111.1(M+ - OH), 83.2 (M+-OH-C₂H₅).

1-Butyl-3-methylimidazolium bromide [BMIM]Br, Dark yellow solid when it is dry, hygroscopic in nature. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 10.03 (1 H, s, N-C<u>H</u>-N), 7.60 (1 H, t, *J* 1.8,

NC<u>*H*</u>CHN), 7.49 (1 H, t, *J* 1.8, NCHC<u>*H*</u>N), 4.23 (2 H, t, *J* 7.3, N-C<u>*H*</u>₂CH₂), 4.01 (3 H, s, NC<u>*H*</u>₃), 1.79 (2 H, tt, *J* 9.4, 6.8, NCH₂C<u>*H*</u>₂CH₂CH₃), 1.32-1.20 (2 H, m, NCH₂CH₂CH₂CH₃), 0.83 (3 H, t, *J* 7.3, NCH₂CH₂CH₂C<u>*H*</u>₃).¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 135.82, 123.35, 121.95, 48.94, 36.16, 31.44, 18.69, 12.91. LC-MS: 139.1 (M⁺-Br), 111.1 (M⁺-Br-C₂H₃), 83.2 (M⁺-Br-C₄H₉).

1-Butyl-3-methylimidazolium hydroxide [BMIM]OH, Dark yellow liquid. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 10.11 (1 H, s, N-C<u>H</u>-N), 7.61 (1 H, t, *J* 1.8, NC<u>H</u>CHN), 7.48 (1 H, t, *J* 1.8, NCHC<u>H</u>N), 4.24 (2 H, t, *J* 7.4, N-C<u>H</u>₂CH₂), 4.02 (3 H, s, NC<u>H</u>₃), 1.85-1.74 (2 H, m, NCH₂C<u>H</u>₂CH₂CH₃), 1.27 (2 H, h, *J* 7.4, NCH₂CH₂CH₂CH₃), 0.84 (3 H, t, *J* 7.4, NCH₂CH₂CH₂CH₂CH₃). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 136.31, 123.59, 122.17, 49.29, 36.57, 31.95, 19.21, 13.29. LC-MS: 139.1 (M+-OH), 83.2 (M+-OH-C₄H₉).

1-Octyl-3-methylimidazolium bromide [OMIM]Br, Golden yellow liquid. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 10.37 (1 H, s, N-C<u>H</u>-N), 7.57 (1 H, s, NC<u>H</u>CHN), 7.41 (1 H, s, NCHC<u>H</u>N), 4.32 (2 H, t, *J* 7.4, N-C<u>H</u>₂CH₂), 4.14 (3 H, d, *J* 2.3, NC<u>H</u>₃), 1.92 (2 H, p, *J* 7.3, NCH₂C<u>H</u>₂ C₅H₁₀CH₃), 1.42-1.16 (10 H, m, NCH₂CH₂C₅<u>H</u>₁₀CH₃), 0.87 (3 H, dd, *J* 7.7, 5.3, NCH₂CH₂C₅H₁₀C<u>H</u>₃).¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 136.50, 123.69, 121.91, 49.80, 36.50, 31.41, 30.01, 28.77, 25.97, 22.30, 17.97, 13.91. LC-MS: 195.2 (M+-Br).

1-Octyl-3-methylimidazolium hydroxide [OMIM]OH, Dark yellow liquid. ¹H NMR (CDCl₃, 400 MHz) δ (ppm): 10.17 (1 H, d, *J* 2.7, N-C*H*-N), 7.62 (1 H, s, NC*H*CHN), 7.45 (1 H, s, NCHC*H*N), 4.27 (2 H, t, *J* 7.4, N-C*H*₂CH₂), 4.08 (3 H, s, NC*H*₃), 1.86 (2 H, p, *J* 7.4, NCH₂C*H*₂ C₅H₁₀CH₃), 1.34-1.12 (11 H, m, NCH₂CH₂C₅*H*₁₀CH₃), 0.81 (3 H, t, *J* 6.7, NCH₂CH₂C₅H₁₀C*H*₃). ¹³C NMR (CDCl₃, 100 MHz) δ (ppm): 135.50, 122.76, 121.17, 48.72, 35.47, 30.36, 29.07, 27.72, 27.66, 24.91, 21.26, 12.82. MS (ESI): 196.20 (M+-OH), 182.27 (M+-OH-CH₃), 167.80 (M+-OH-C₂H₅), 153.13 (M+-OH-C₃H₇).

Fig. S1. ¹H NMR spectrum of 1-ethyl-3-methylimidazolium bromide.

Fig. S2. Mass spectrum of 1-ethyl-3-methylimidazolium bromide.

Fig. S3. ¹H NMR spectrum of 1-ethyl-3-methylimidazolium hydroxide.

Fig. S4. Mass spectrum of 1-ethyl-3-methylimidazolium hydroxide.

Fig. S5. ¹H NMR spectrum of 1-butyl-3-methylimidazolium bromide.

Fig. S6. Mass spectrum of 1-butyl-3-methylimidazolium bromide.

Fig. S7. ¹H NMR spectrum of 1-butyl-3-methylimidazolium hydroxide.

Fig. S8. Mass spectrum of 1-butyl-3-methylimidazolium hydroxide.

Fig. S9. ¹H NMR spectrum of 1-octyl-3-methylimidazolium bromide.

Fig. S10. Mass spectrum of 1-octyl-3-methylimidazolium bromide.

Fig. S11. ¹H NMR spectrum of 1-octyl-3-methylimidazolium hydroxide.

Fig. S12. Mass spectrum of 1-octyl-3-methylimidazolium hydroxide.

Table S1.

Percentage of paralysis and percentage of mortality of earthworms against six different ionic liquids and Albendazole at different time intervals.

S. No.	ILs or Drug	Time		% Paralysis of earthworms at different concentration of ILs											% Mortality of earthworms at different concentration of ILs											
	LLS OF DI UG	(min)	2 mM			4 mM			8 mM			16 mM			2 mM			4 mM			8 mM			16 mM		
1.	[EMIM] Br	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		45	0	0	0	0	0	0	20	0	0	20	20	20	0	0	0	0	0	0	0	0	0	0	0	0
		60	0	0	0	0	0	0	20	20	0	40	40	40	0	0	0	0	0	0	0	0	0	0	0	0
		75	0	0	0	0	0	0	20	20	20	40	40	40	0	0	0	0	0	0	0	0	0	0	0	0
		90	0	0	0	0	0	0	20	20	20	40	80	40	0	0	0	0	0	0	0	0	20	0	0	20
		120	20	20	20	20	20	20	40	40	40	60	60	60	0	0	0	0	0	0	20	20	20	40	20	40
		15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		45	0	0	0	0	0	0	0	0	0	20	20	20	0	0	0	0	0	0	0	0	0	0	0	0
2.	[EMIM] OH	60	20	20	20	20	20	20	20	20	20	40	40	40	0	0	0	0	0	0	0	0	0	0	0	0
		75	20	20	20	20	20	20	20	20	20	40	40	40	0	0	0	0	0	0	0	0	0	0	0	0
		90	20	20	20	40	40	40	40	40	40	60	60	60	0	0	0	40	40	40	40	40	40	40	40	40
		120	40	40	60	60	60	60	60	60	60	60	60	60	0	0	0	40	40	40	40	40	40	40	40	40

	[BMIM] Br 90 12	15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		30	0	0	0	0	0	0	20	20	0	20	20	0	0	0	0	0	0	0	0	0	0	0	0	0
3.		45	0	0	0	0	0	0	40	40	0	40	40	0	0	0	0	0	0	0	0	0	0	0	0	0
		60	0	0	0	20	40	40	40	40	20	40	40	40	0	0	0	0	0	0	0	0	0	0	0	0
		75	0	0	20	60	60	60	60	60	60	60	60	60	0	0	0	0	0	0	0	0	0	0	0	0
		90	60	40	20	100	100	100	100	100	100	100	100	100	0	0	0	20	20	20	20	20	20	20	20	20
		120	100	100	10 0	100	100	100	100	100	100	100	100	100	0	0	0	20	20	20	40	40	40	60	60	60
4.	[BMIM] OH	15	0	0	0	0	0	0	0	0	0	20	20	20	0	0	0	0	0	0	0	0	0	0	0	0
		30	0	0	0	0	0	0	0	0	0	20	20	20	0	0	0	0	0	0	0	0	0	0	0	0
		45	0	0	0	20	20	20	20	20	20	40	40	40	0	0	0	0	0	0	0	0	0	0	0	0
		60	20	20	20	20	20	20	40	40	40	60	60	60	0	0	0	0	0	0	0	0	0	0	0	0
		75	60	40	40	40	40	40	60	60	60	100	100	100	0	0	0	0	0	0	0	0	0	20	20	20
		90	60	60	60	80	80	80	80	80	80	100	100	100	0	0	0	20	20	20	20	20	20	40	40	40
		120	80	80	80	80	80	80	100	100	100	100	100	100	20	20	20	20	20	20	20	20	20	40	40	40
		15	0	0	0	0	0	0	20	20	20	40	40	40	0	0	0	0	0	0	0	0	0	0	0	0
		30	0	0	0	20	0	0	20	20	20	100	100	100	0	0	0	0	0	0	0	0	0	0	0	0
5	[OMIM]	45	0	0	0	40	20	20	100	100	100	100	100	100	0	0	0	0	0	0	0	0	0	60	60	60
5.	Br	60	40	40	40	40	40	40	100	100	100	100	100	100	0	0	0	0	0	0	40	80	80	100	100	100
		75	60	60	60	60	60	60	100	100	100	100	100	100	0	0	0	0	0	0	60	100	80	100	100	100
		90	100	100	10 0	100	100	100	100	100	100	100	100	100	20	20	20	20	20	20	10 0	100	10 0	100	100	100

		120	100	100	10 0	100	100	100	100	100	100	100	100	100	40	40	40	60	60	60	10 0	100	10 0	100	100	100
6.	[OMIM] OH	15	20	20	20	20	20	20	40	40	40	60	60	60	0	0	0	0	0	0	0	0	0	0	0	0
		30	40	40	40	80	80	80	40	40	40	100	100	100	0	0	0	20	20	20	20	20	20	80	100	100
		45	100	100	10 0	100	100	100	100	100	100	100	100	100	40	40	40	40	40	40	80	80	80	100	100	100
		60	100	100	10 0	100	100	100	100	100	100	100	100	100	80	60	80	80	80	80	10 0	100	10 0	100	100	100
		75	100	100	10 0	100	100	100	100	100	100	100	100	100	100	80	80	80	80	80	10 0	100	10 0	100	100	100
		90	100	100	10 0	100	100	100	100	100	100	100	100	100	100	100	100	10 0	100	100	10 0	100	10 0	100	100	100
		120	100	100	10 0	100	100	100	100	100	100	100	100	100	100	100	100	10 0	100	100	10 0	100	10 0	100	100	100
		15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		30	0	0	0	0	0	0	0	0	0	60	60	60	0	0	0	0	0	0	0	0	0	0	0	0
		45	0	0	0	0	0	0	20	20	20	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0
7.	Albendazole	60	0	0	0	20	20	20	40	40	20	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0
		75	0	0	20	40	40	40	40	40	40	80	80	80	0	0	0	0	0	0	0	0	0	0	0	0
		90	20	20	20	60	60	60	80	80	80	100	100	100	0	0	0	20	20	20	20	20	20	20	20	20
		120	40	40	40	80	80	80	100	100	100	100	100	100	0	0	0	20	20	20	20	20	20	40	40	40

Fig. S14. The state of earthworms on treatment with ionic liquids.

Molecular Docking Protocol:

The program Glide (Grid-Based Ligand Docking with Energetics) incorporated in the Schrödinger molecular modeling package (Schrödinger, Inc., USA, *version- 2014-14*) installed on a Windows workstation with an Intel (R) xenon 2.8 GHz processor and 32 GB physical memory was used to perform the molecular docking study.

The protein structure was cleaned and optimized using the *Protein Preparation Wizard*. The crystallographic water molecules were removed as no water molecule was found to be conserved and hydrogen atoms were added to the protein structure corresponding to pH 7.0 considering the appropriate ionization states for both the acidic and basic amino acid residue. Following the assignment of charge and protonation state, energy minimization with root mean square deviation (RMSD) value of 0.30Å was carried out using the Optimized Potentials for Liquid Simulations (OPLS-2005) force field. On the other hand, the 3D geometries of the IL structures were optimized using LigPrep module and the partial charges were ascribed using the OPLS-2005 force-field. The binding pocket of β -tubulin was defined by a 14×14×14Å box that was centered on the geometric centroid of the co-crystallized Albendazole structure in the PDB complex. Flexibility of the IL as well as the β -tubulin was considered during docking, allowing for a flip of 5- and 6-membered rings. Extra-precision scoring function in Glide was used to rank the docking poses and to measure the relative binding affinities of the ILs to β -tubulin.