Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information for

Copper catalyzed direct tert-butyl sulfonylation of alkynes

with t-butylsulfinamide leading to (E)-vinyl tert-butyl sulfones

Zhidong Liu,^a Xiaolan Chen,^{*a} Jianyu Chen,^a Lingbo Qu,^{*ab} Yingya Xia,^a Haitao Wu,^a Huili Ma,^a Shaohua Zhu,^a Yufen Zhao^c

 College of Chemistry and Molecular Engineering, Zhengzhou University, Key Laboratory of Chemistry Biology and Organic Chemistry, Zhengzhou 450052, China;
School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China;
Department of Chemistry, Xiamen University, Xiamen 361005, China E-mail: chenxl@zzu.edu.cn

Table of contents

1.	General	S2
2.	Typical experiment	
	procedure	52
3.	Experiments on the investigation of mechanism	S2
4.	Characterization of compounds	
5.	Copies of ¹ H-NMR and ¹³ C-NMR spectra	

1. General:

NMR spectra were recorded with a 400 NMR spectrometer for ¹H-NMR, 100 MHz for ¹³C-NMR. Proton chemical shifts δ were given in ppm relative to tetramethylsilane (0.00 ppm) in CDCl₃. High resolution mass spectra were taken with a 3000 mass spectrometer, using Waters Q-Tof MS/MS system. For column chromatography 200-300 mesh silica gel (GF254) was used as the stationary phase. All reactions were monitored by thin layer chromatography (TLC). All reactions were set up in air (with no use of a glove box). All substrates were purchased commercially and used without further purification.

2. Typical experiment procedure:

A 50-mL round-bottom flask containing a stirbar was charged with 1.0 mmol of alkynes, 1.2 mmol t-butylsulfinamide, 2.0 mmol of H_3PO_3 , 20 mol% of $CuSO_4 \bullet 5H_2O$, 2.0 mmol TFA. The reaction was stirred at 100 °C for 12 h (monitored by TLC). Upon completion of the reaction, the mixture was diluted with brine (20 mL) and extracted with dichloromethane (20.0 mL × 3). The organic layers were combined, washed with brine, dried over anhydrous Na_2SO_4 , and filtered. The solvents were removed via rotary evaporator under reduced pressure and the residue was purified with flash chromatography (silica gel, gradient eluent of petroleum ether/ ethyl acetate = 3:1) to yield the desired product. All products shows *E* configuration, indicating a high stereo-selectivity of the this reaction (the related ¹HNMR data for supporting the *E* configuration).

3. Experiments on the investigation of mechanism

1a (1.0 mmol), **2** (1.2 mmol), H_3PO_3 (2.0 mmol), $CuSO_4 \bullet 5H_2O$ (20 mol%), TFA (2.0 mmol) at 100 °C under nitrogen atmosphere for 12 h.

(b) Evidence in support of a radical pathway:

(a) Role of air as the oxidant:

1a (1.0 mmol), **2** (1.2 mmol), H₃PO₃ (2.0 mmol), CuSO₄•5H₂O (20 mol%), TFA (2.0 mmol), TEMPO (3 equiv) at 100 °C for 12 h.

(c) Role of H₂¹⁸O:

1a (1.0 mmol), **2** (1.2 mmol), $H_2^{18}O$ (10 equiv), H_3PO_3 (2.0 mmol), $CuSO_4$ (20 mol%), TFA (2.0 mmol), at 100°C for 12 h.

The HRMS spectra of products was listed as bellow:

PDF created with pdfFactory trial version www.pdffactory.com

4. Characterization of compounds

(E)-(2-(tert-butylsulfonyl)vinyl)benzene (3a)

Yellow solid Mp:98~100 °C ¹H NMR(CDCl₃, 400 MHz): δ(ppm) 7.59 (d, *J*=15.6 Hz, 1H), 7.55-7.53 (m, 2H), 7.46-7.43 (m, 3H), 6.83 (d, *J*=15.6 Hz, 1H), 1.43 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ(ppm) 146.5, 132.5, 131.3, 129.2, 128.6, 120.6, 59.0, 23.4; HRMS: C₁₂H₁₆O₂S [M+Na]⁺ 247.0763, found 247.0768.

(E)-1-(2-(tert-butylsulfonyl)vinyl)-4-methylbenzene (3b)

Yellow solid Mp:127~133 °C ¹H NMR(CDCl₃, 400 MHz): δ (ppm) 7.55 (d, *J*=15.2Hz, 1H), 7.43(d, *J*=8.4 Hz, 2H), 7.23 (d, *J*=8.0 Hz, 2H), 6.77 (d, *J*=15.2 Hz, 1H), 2.40 (s, 3H), 1.42(s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ (ppm) 146.5, 141.9, 129.9, 129.8, 128.6, 119.3, 58.9, 23.5, 21.6; HRMS: C₁₃H₁₈O₂S [M+Na]⁺ 261.0920, found 261.0923.

(E)-1-(2-(tert-butylsulfonyl)vinyl)-4-ethylbenzene (3c)

Yellow solid Mp:51~57 °C ¹H NMR(CDCl₃, 400 MHz): δ (ppm) 7.56 (d, *J*=15.6 Hz, 1H), 7.46 (d, *J*=8.0 Hz, 2H), 7.26 (d, *J*=6.4 Hz, 2H), 6.77 (d, *J*=15.6 Hz, 1H), 2.69 (q, *J*=7.2 Hz, 2H), 1.42 (s, 9H), 1.25 (t, *J*=7.6 Hz, 3H); ¹³C NMR(CDCl₃, 100 MHz): δ (ppm) 146.5, 141.9, 129.9, 129.8, 128.6, 119.3, 58.9, 23.5, 21.6; HRMS: C₁₄H₂₀O₂S [M+Na]⁺ 275.1076, found 275.1081.

(E)-1-(2-(tert-butylsulfonyl)vinyl)-4-propylbenzene (3d)

Yellow solid Mp:33~35 °C ¹H NMR(CDCl₃, 400 MHz): δ (ppm) 7.56 (d, *J*=15.2 Hz, 1H), 7.45 (d, *J*=8.0 Hz, 2H), 7.24 (d, *J*=8.0 Hz, 2H), 6.77 (d, *J*=15.6 Hz, 1H), 2.62 (t, *J*=7.6 Hz, 2H), 1.65(m, 2H), 1.42(s, 9H), 0.95 (t, *J*=7.4 Hz, 3H); ¹³C NMR(CDCl₃, 100 MHz): δ (ppm) 146.7, 146.5, 130.1, 129.3, 128.6, 119.4, 58.9, 37.9, 24.3, 23.5, 13.8; HRMS: C₁₅H₂₂O₂S [M+Na]⁺ 289.1233, found 289.1237.

(E)-1-(2-(tert-butylsulfonyl)vinyl)-4-methoxybenzene (3e)

Yellow oil, ¹H NMR(CDCl₃, 400 MHz): δ (ppm) 7.46-7.39 (t, Ar-<u>H</u> 2H and Ar-C<u>H</u>=CHSO₂C₄H₉ 1H), 6.85 (d, *J*=8.8 Hz, 2H), 6.59 (d, *J*=15.2 Hz, 1H), 3.77 (s, 3H), 1.33 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ (ppm) 162.1, 146.1, 130.4, 125.2, 117.6, 114.5, 58.9, 55.5, 23.5; HRMS: C₁₃H₁₈O₃S [M+H]⁺ 255.1049, found 255.1045.

(E)-1-(2-(tert-butylsulfonyl)vinyl)-4-fluorobenzene (3f)

Yellow solid Mp:80~84 °C ¹H NMR(CDCl₃, 400 MHz): δ(ppm) 7.57-7.52 (m, Ar-<u>H</u> 2H and Ar-C<u>H</u>=CHSO₂C₄H₉ 1H), 7.13 (t, *J*=8.4 Hz, 2H), 6.76 (d, *J*=15.2 Hz, 1H), 1.42 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ(ppm) 164.4 (*J*=251.6 Hz),, 145.1, 130.6 (*J*=8.6 Hz), 128.8 (*J*=3.5 Hz), 120.5 (*J*=2.2 Hz), 116.4 (*J*=21.9 Hz), 58.4, 23.4; HRMS: C₁₂H₁₅FO₂S [M+H]⁺ 243.0850, found 243.0846.

(E)-1-(2-(tert-butylsulfonyl)vinyl)-4-chlorobenzene (3g)

Yellow solid Mp:119~121 °C ¹H NMR(CDCl₃, 400 MHz): δ(ppm) 7.54 (d, *J*=15.6Hz 1H), 7.47 (d, *J*=8.8 Hz, 2H), 7.40 (d, *J*=8.8 Hz, 2H), 6.83 (d, *J*=15.6 Hz, 1H), 1.42 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ(ppm) 144.9, 137.3, 131.0, 129.7, 129.5, 121.4, 59.0, 23.4; HRMS: C₁₂H₁₅ClO₂S [M+H]⁺ 259.0554, found 259.0552.

(E)-1-bromo-4-(2-(tert-butylsulfonyl)vinyl)benzene (3h)

Yellow solid Mp:86~89 °C ¹H NMR(CDCl₃, 400 MHz): δ (ppm) 7.57 (t, *J*=8.4 Hz 2H), 7.53 (d, *J*=15.6 Hz, 1H), 7.40 (d, *J*=8.4 Hz, 2H), 6.83 (d, *J*=15.6 Hz, 1H), 1.42 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ (ppm) 145.0, 132.4, 131.4, 129.9, 125.7, 121.5, 59.0, 23.4; HRMS: C₁₂H₁₅BrO₂S [M+H]⁺ 303.0049, found 303.0046.

(E)-4-(2-(tert-butylsulfonyl)vinyl)benzonitrile (3i)

Yellow solid Mp:152~155 °C ¹H NMR(CDCl₃, 400 MHz): δ (ppm) 7.74 (d, *J*=8.4 Hz, 2H), 7.65 (d, *J*=8.4 Hz, 2H), 7.61 (d, *J*=15.6 Hz, 1H), 6.98 (d, *J*=15.6 Hz, 1H), 1.44 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ (ppm)143.9, 136.7, 132.9, 128.9, 124.7, 118.0, 114.4, 59.2, 23.4; HRMS: C₁₃H₁₅NO₂S [M+H]⁺ 250.0896, found 250.0893.

(E)-1-(2-(tert-butylsulfonyl)vinyl)-3-methoxybenzene (3j)

Yellow oil ¹H NMR(CDCl₃, 400 MHz): δ (ppm) 7.55 (d, *J*=15.6 Hz, 1H), 7.34 (t, *J*=8.0 Hz, 1H), 7.13 (d, *J*=8.0 Hz, 1H), 7.04 (s, 1H), 6.99 (dd, *J*=2.8 Hz, *J*=8.4 Hz, 1H), 6.82(d, *J*=15.6 Hz, 1H), 3.84 (s, 3H), 1.42 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ (ppm) 160.0, 146.4, 133.8, 130.2, 121.1, 120.9, 117.0, 113.5, 60.4, 55.4, 23.4; HRMS: C₁₃H₁₈O₃S [M+H]⁺ 255.1049, found 255.1047.

(E)-N-(3-(2-(tert-butylsulfonyl)vinyl)phenyl)acetamide (3k)

Yellow solid Mp:47~49 °C ¹H NMR(CDCl₃, 400 MHz): δ(ppm) 7.79 (s, -N<u>H</u>- 1H and Ar-<u>H</u>), 7.58 (d, *J*=8.4 Hz, 1H), 7.53 (d, *J*=15.6 Hz, 1H), 7.35 (t, *J*=7.8 Hz, 1H), 7.23 (d, *J*=7.6 Hz, 1H), 6.84 (d, *J*=15.6 Hz, 1H), 2.20 (s, 3H), 1.42 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ(ppm) 168.8, 146.2, 138.9, 133.2, 129.7, 124.4, 122.5, 121.1, 119.4, 59.0, 24.6, 23.4; HRMS: C₁₄H₁₉NO₃S [M+H]⁺ 282.1158, found 282.1156.

(E)-1-(2-(tert-butylsulfonyl)vinyl)-3-methylbenzene (31)

Yellow solid Mp:68~72 °C ¹H NMR(CDCl₃, 400 MHz): δ (ppm) 7.56 (d, *J*=15.6 Hz, 1H), 7.34-7.42 (t, 3H), 7.27-7.25 (d, 1H), 6.81 (d, *J*=15.6 Hz, 1H), 2.39 (s, 3H), 1.42 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ (ppm) 146.7, 138.9, 132.5, 132.1, 129.2, 129.0, 125.8, 120.4, 58.9, 23.5, 21.3; HRMS: C₁₃H₁₈O₂S [M+H]⁺ 239.1100, found 239.1097F.

(E)-1-(2-(tert-butylsulfonyl)vinyl)-3-fluorobenzene (3m)

Yellow solid Mp:85~89 °C ¹H NMR(CDCl₃, 400 MHz): δ (ppm) 7.56 (d, *J*=15.6 Hz, 1H), 7.44-7.39 (m, 1H), 7.31 (d, 1H), 7.25-7.22 (m, 1H), 7.18-7.13 (m, 1H), 6.84 (d, *J*=15.6 Hz, 1H), 1.43 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ (ppm) 163.0 (*J*=246 Hz), 145.0, 134.7(*J*=8.0 Hz), 130.8 (*J*=8.0 Hz), 124.6 (*J*=3.0 Hz), 122.3, 118.2 (*J*=21.0 Hz), 114.8 (*J*=22.0 Hz), 59.0, 23.4; HRMS: C₁₂H₁₅FO₂S [M+H]⁺ 243.0850, found 243.0848.

(E)-1-bromo-3-(2-(tert-butylsulfonyl)vinyl)benzene (3n)

Yellow solid Mp:43~47 °C ¹H NMR(CDCl₃, 400 MHz): δ(ppm) 7.68 (s, 1H), 7.58 (d, *J*=8.0 Hz, 1H), 7.52 (d, *J*=15.6 Hz, 1H), 7.45 (d, *J*=8.0 Hz, 1H), 7.31 (t, *J*=8.0 Hz, 1H), 6.84 (d, *J*=15.6 Hz, 1H), 1.42 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ(ppm) 144.7, 134.6, 134.0, 131.1, 130.7, 127.2, 123.3, 122.4, 59.0, 23.4; HRMS: C₁₂H₁₅BrO₂S [M+H]⁺ 303.0049, found 303.0047.

(E)-1-(2-(tert-butylsulfonyl)vinyl)-2-fluorobenzene (30)

Yellow solid Mp:80~84 °C ¹H NMR(CDCl₃, 400 MHz): δ (ppm) 7.97 (d, *J*=15.2 Hz, 1H), 7.58 (d, *J*=7.6 Hz, 1H), 7.46 (d, *J*=8.0 Hz, 1H), 7.38 (t, *J*=7.2 Hz, 1H), 7.33 (t, *J*=7.2 Hz, 1H), 6.86 (d, *J*=15.6 Hz, 1H), 1.44 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ (ppm) 142.8, 135.1, 131.9, 131.1, 130.4, 128.5, 127.3, 123.9, 59.0, 23.4; HRMS: C₁₂H₁₅FO₂S [M+H]⁺ 243.0850, found 243.0849.

(E)-1-(2-(tert-butylsulfonyl)vinyl)cyclohex-1-ene (3p)

Yellow solid Mp:32~36 °C ¹H NMR(CDCl₃, 400 MHz): δ (ppm) 7.16 (d, *J*=15.2 Hz, 1H), 6.28 (t, *J*=4.0 Hz, 1H), 6.12 (d, *J*=15.2 Hz, 1H), 2.26-2.25 (d, 2H), 2.24-2.14 (d, 2H), 1.75-1.69 (m, 2H), 1.67-1.61 (m, 2H), 1.37 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ (ppm) 149.7, 141.6, 133.4, 116.7, 58.7, 26.5, 24.3, 23.4, 21.83, 21.76; HRMS: C₁₂H₂₀O₂S [M+H]⁺ 229.1257, found 229.1254.

(E)-2-(2-(tert-butylsulfonyl)vinyl)pyridine (3q)

Yellow oil, ¹H NMR(CDCl₃, 400 MHz): δ (ppm) 8.67 (d, *J*=4.8Hz, 1H), 7.78-7.74 (m, 1H), 7.59 (d, *J*=15.2 Hz, 1H), 7.46 (d, *J*=15.2 Hz, 1H), 7.42 (d, *J*=8.0 Hz, 1H), 7.35-7.31 (m, 1H), 1.44 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ (ppm) 151.0, 150.4, 144.5, 137.1, 125.5, 125.5, 125.1, 58.8, 23.4; HRMS: C₁₁H₁₅NO₂S [M+H]⁺ 226.0896, found 226.0893.

(E)-2-(2-(tert-butylsulfonyl)vinyl)thiophene (3r)

Yellow solid Mp:40[~]47 °C ¹H NMR(CDCl₃, 400 MHz): δ (ppm) 7.68 (d, *J*=15.2 Hz, 1H), 7.47 (d, *J*=4.8 Hz, 1H), 7.33 (d, *J*=3.6 Hz, 1H), 7.11-7.09 (m, 1H), 6.60 (d, *J*=15.2 Hz, 1H), 1.42 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ (ppm) 138.8, 137.1, 132.4, 129.9, 128.4, 118.8, 59.0 23.4; HRMS: C₁₀H₁₄O₂S₂ [M+H]⁺ 231.0508, found 231.0506.

(E)-3-(2-(tert-butylsulfonyl)vinyl)thiophene (3s)

Yellow oil, ¹H NMR(CDCl₃, 400 MHz): δ (ppm) 7.61-7.55 (m, 2H, Ar-H and CH₃SO₂CH=C<u>H</u>), 7.40-7.38 (m, 1H), 7.29 (d, *J*=2.8 Hz, 1H), 6.66 (d, *J*=15.6 Hz, 1H), 1.41 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ (ppm) 139.8, 135.4, 130.0, 127.6, 125.2, 120.0, 58.9, 23.4; HRMS: C₁₀H₁₄O₂S₂ [M+H]⁺ 231.0508, found 231.0505.

(E)-1-(2-(tert-butylsulfonyl)vinyl)-3-ethynylbenzene (3t)

Yellow solid Mp:91~94 °C ¹H NMR(CDCl₃, 400 MHz): δ (ppm) 7.66 (s, 1H), 7.57-7.50 (m, 3H, Ar-H and CH₃SO₂CH=C<u>H</u>), 7.40 (t, *J*=15.4 Hz 1H), 6.85 (d, *J*=15.5 Hz, 1H), 3.15 (s, 1H), 1.42 (s, 9H); ¹³C NMR(CDCl₃, 100 MHz): δ (ppm) 145.23, 134.51, 132.80, 131.82, 129.21, 128.82, 123.30, 121.91, 82.40, 78.54, 58.99, 23.42. HRMS: C₁₄H₁₆OS₂ [M+H]⁺ 249.0944, found 249.0941.

5. ¹H NMR, and ¹³C NMR copies of products

Fig 1. ¹H-NMR spectrum of 3a

Fig 2. ¹³C-NMR spectrum of 3a

Fig 4. ¹³C-NMR spectrum of 3b

Fig 6. ¹³C-NMR spectrum of 3c

Fig 7. ¹H-NMR spectrum of **3d**

Fig 8. ¹³C-NMR spectrum of 3d

Fig 9. ¹H-NMR spectrum of 3e

Fig 10. ¹³C-NMR spectrum of 3e

Fig 11. ¹H-NMR spectrum of 3f

Fig 12. ¹³C-NMR spectrum of 3f

Fig 13. ¹H-NMR spectrum of 3g

Fig 14. ¹³C-NMR spectrum of 3g

Fig 15. ¹H-NMR spectrum of 3h

Fig 16. ¹³C-NMR spectrum of 3h

Fig 17. ¹H-NMR spectrum of 3i

Fig 18. ¹³C-NMR spectrum of 3i

Fig 19. ¹H-NMR spectrum of 3j

Fig 20. ¹³C-NMR spectrum of 3j

Fig 21. ¹H-NMR spectrum of 3k

Fig 22. ¹³C-NMR spectrum of 3k

Fig 23. ¹H-NMR spectrum of 3I

Fig 24. ¹³C-NMR spectrum of 3I

Fig 25. ¹H-NMR spectrum of 3m

Fig 26. ¹³C-NMR spectrum of 3m

Fig 27. ¹H-NMR spectrum of **3n**

Fig 28. ¹³C-NMR spectrum of 3n

Fig 29. ¹H-NMR spectrum of **30**

Fig 30. ¹³C-NMR spectrum of 30

Fig 31. ¹H-NMR spectrum of 3p

Fig 32. ¹³C-NMR spectrum of 3p

Fig 33. ¹H-NMR spectrum of 3q

Fig 34. ¹³C-NMR spectrum of 3q

Fig 35. ¹H-NMR spectrum of 3r

Fig 36. ¹³C-NMR spectrum of 3r

Fig 37. ¹H-NMR spectrum of 3s

Fig 38. ¹³C-NMR spectrum of 3s

Fig 40. ¹³C-NMR spectrum of 3t