Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016

Supplementary material

Distribution of carbon nanotubes in fresh ordinary Portland cement pastes: understanding from a two-phase perspective

Shu Jian Chen¹, Wei Wang¹, Kwesi Sagoe-Crentsil², Frank Collins¹, Xiao Ling Zhao¹, Mainak Majumder³ and Wen Hui Duan^{1*}

¹Department of Civil Engineering, Monash University, Clayton, VIC, 3800, Australia ²CSIRO Manufacturing & Infrastructure Technology, Highett, Victoria 3190, Australia ³Department of Mechanical and Aerospace, Monash University, Clayton, VIC, 3800, Australia

Calculation of specific extinction coefficient

To determine ε , the suspension with $C_t = 0.0026$ wt% and surfactant concentration was prepared and diluted with factors of 2, 3, 4, 5. These suspensions were subjected to ultrasonication until their ABS reaches the maximum. With such low C_t , sufficient surfactant and ultrasonication, the CNTs in these suspensions are regarded as fully dispersed. To obtain ε in the unit of ml mg-1cm-1, the measured ABS was then plotted against CNT concentration, c (mg/ml), in Figure S1. The data was fitted with a function of ABS = $\varepsilon l c$, where l = 1 cm is the path length of the UV cuvette. ε is found to be 50 ml mg-1cm-1 as shown in Figure S1.

Figure S1, ABS vs CNT concentration (c) and the fitted linear relationship (dashline).