Electronic Supplementary Material (ESI) for RSC Advances.
This journal is © The Royal Society of Chemistry 2015
Supplementary Information
for

Kinetics of the Oxidation of Isoniazid with Hypochlorite Ion

Virág Bogdándi, Gábor Lente* and István Fábián

Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen, Hungary

Suppose that a general reaction with the following stoichiometry is investigated by spectrophotometric titration:

$$
\begin{equation*}
\mathrm{R}_{1}+\mu \mathrm{R}_{2} \rightarrow \sum v_{i} \mathrm{P}_{i} \tag{S1}
\end{equation*}
$$

The stoichiometric coefficient of R_{1} is set 1 , this can always be achieved by normalizing the equation (as a consequence, the rest of the coefficients, μ and v_{i} are not necessarily integers). A titration is carried out by selecting a suitable volume of the solution (V_{ini}) of reagent R_{1} with concentration $c_{\mathrm{R} 1}$ and adding the titrant solution of R_{2} with concentration $c_{\mathrm{R} 2}$ gradually. The initial amount of substance for reagent A is $V_{\mathrm{ini}} c_{\mathrm{R} 1}$ for the entire titration. After the addition of titrant solution with volume V, the amount of substance for reagent R_{2} is given as $V c_{\mathrm{R} 2}$. There are two cases:

1. If a relatively low amount of titrant R_{2} has been added, reagent A remains in excess. The final concentration of R_{2} is $\left[\mathrm{R}_{2}\right]=0$, the concentration of remaining R_{1} is $\left[\mathrm{R}_{1}\right]=\left(V_{\mathrm{ini}} c_{\mathrm{R} 1}-\right.$ $\left.V c_{\mathrm{R} 2} / \mu\right) /\left(V_{\text {ini }}+V\right)$. The concentrations of the products are $\left[\mathrm{P}_{i}\right]=v_{i} / \mu \times V c_{\mathrm{R} 2} /\left(V_{\text {ini }}+V\right)$. According to Beer's law, each substance present can contribute to the absorbance. The molar absorptivity of R_{1} is $\varepsilon_{\mathrm{R} 1}$, the molar absorptivity R_{2} is $\varepsilon_{\mathrm{R} 2}$, the molar absorptivity of product P_{i} is $\varepsilon_{\mathrm{P} i}$. Therefore, the absorbance reading after the addition of titrant solution with volume V is given as:

$$
\begin{equation*}
A=\varepsilon_{\mathrm{R} 1}\left[\mathrm{R}_{1}\right]+\varepsilon_{\mathrm{R} 2}\left[\mathrm{R}_{2}\right]+\sum \varepsilon_{\mathrm{P} i}\left[\mathrm{P}_{i}\right]=\varepsilon_{\mathrm{R} 2} \frac{V_{\mathrm{ini}} c_{\mathrm{R} 1}-V c_{\mathrm{R} 2} / \mu}{V_{\mathrm{ini}}+V}+\sum \frac{\varepsilon_{\mathrm{P} i} v_{i} V c_{\mathrm{R} 2}}{\mu\left(V_{\mathrm{ini}}+V\right)} \tag{S2}
\end{equation*}
$$

The dilution (η) was defined in the main text as $\eta=\left(V+V_{\text {ini }}\right) / V_{\text {ini }}$. The molar ratio of the two reactants (ξ) is simply given as $\xi=V c_{\mathrm{B}} /\left(V_{\mathrm{ini}} c_{\mathrm{A}}\right)$. With these new quantities, Eq. S 2 can be successively re-arranged as follows:

$$
\begin{align*}
& \frac{V_{\mathrm{ini}}+V}{V_{\mathrm{ini}}} A=\varepsilon_{\mathrm{R} 1} c_{\mathrm{R} 1}-\frac{\varepsilon_{\mathrm{R} 1} V c_{\mathrm{R} 2}}{\mu V_{\mathrm{ini}}}+\sum \frac{\varepsilon_{\mathrm{P} i} v_{i} V c_{\mathrm{R} 2}}{\mu V_{\mathrm{ini}}} \tag{S3}\\
& \eta A=\varepsilon_{\mathrm{R} 1} c_{\mathrm{R} 1}-\xi \frac{\varepsilon_{\mathrm{R} 1} c_{\mathrm{R} 1}}{\mu}+\frac{\xi c_{\mathrm{R} 1}}{\mu} \sum \varepsilon_{\mathrm{P} i} v_{i} \tag{S4}\\
& \eta A=\varepsilon_{\mathrm{R} 1} c_{\mathrm{R} 1}+\xi\left(\frac{c_{\mathrm{R} 1}}{\mu} \sum \varepsilon_{\mathrm{P} i} v_{i}-\frac{\varepsilon_{\mathrm{R} 1} c_{\mathrm{R} 1}}{\mu}\right) \tag{S5}
\end{align*}
$$

Therefore, if ηA is plotted as a function of ξ, a straight line is expected with intercept $\varepsilon_{\mathrm{R} 1} c_{\mathrm{R} 1}$ and slope $\left(\frac{c_{\mathrm{R} 1}}{\mu} \sum \varepsilon_{\mathrm{P} i} v_{i}-\frac{\varepsilon_{\mathrm{R} 1} c_{\mathrm{R} 1}}{\mu}\right)$.
2. If reagent R_{2} has been added by excess, then R_{1} is not present any more $\left[\mathrm{R}_{1}\right]=0$. The concentration of remaining R_{2} is $\left[\mathrm{R}_{2}\right]=\left(V c_{\mathrm{R} 2}-\mu V_{\mathrm{ini}} c_{\mathrm{R} 1}\right) /\left(V_{\text {ini }}+V\right)$, whereas the concentrations of the products are $\left[\mathrm{P}_{i}\right]=v_{i} V_{\mathrm{ini}} c_{\mathrm{RI}} /\left(V_{\mathrm{ini}}+V\right)$. The absorbance signal then equals to:

$$
\begin{equation*}
A=\varepsilon_{\mathrm{A}}\left[\mathrm{R}_{1}\right]+\varepsilon_{\mathrm{B}}\left[\mathrm{R}_{2}\right]+\sum \varepsilon_{\mathrm{P} i}\left[\mathrm{P}_{i}\right]=\varepsilon_{\mathrm{R} 2} \frac{V c_{\mathrm{R} 2}-\mu V_{\mathrm{ini}} c_{\mathrm{R} 1}}{V_{\mathrm{ini}}+V}+\sum \frac{\varepsilon_{\mathrm{P} i} v_{i} V_{\mathrm{ini}} c_{\mathrm{R} 1}}{\left(V_{\mathrm{ini}}+V\right)} \tag{S6}
\end{equation*}
$$

As in the previous case, this equation can be successively re-arranged as follows:

$$
\begin{align*}
& \frac{V_{\mathrm{ini}}+V}{V_{\mathrm{ini}}} A=\frac{\varepsilon_{\mathrm{R} 2} V c_{\mathrm{R} 2}}{V_{\mathrm{ini}}}-\mu \varepsilon_{\mathrm{R} 2} c_{\mathrm{R} 1}+c_{\mathrm{R} 1} \sum \varepsilon_{\mathrm{P} i} v_{i} \tag{S7}\\
& \eta A=\varepsilon_{\mathrm{R} 2} c_{\mathrm{R} 1} \xi+\left(c_{\mathrm{R} 1} \sum \varepsilon_{\mathrm{P} i} v_{i}-\mu \varepsilon_{\mathrm{R} 2} c_{\mathrm{R} 1}\right) \tag{S8}
\end{align*}
$$

Again, if η Abs is plotted as a function of ξ, a straight line is expected with intercept $\left(c_{\mathrm{R} 1} \sum \varepsilon_{\mathrm{P} i} v_{i}-\mu \varepsilon_{\mathrm{R} 1} c_{\mathrm{R} 2}\right)$ and slope $\varepsilon_{\mathrm{R} 2} c_{\mathrm{R} 1}$.

Therefore, it has been established that the points in the plot will lie on either of the two straight lines depending on whether they have been measured at an excess of R_{1} or R_{2}. The common point (intersection) of the straight lines is found at the value of ξ_{c} where the ηA values are equal.

$$
\begin{equation*}
\varepsilon_{\mathrm{R} 1} c_{\mathrm{R} 1}+\xi_{\mathrm{c}}\left(\frac{c_{\mathrm{R} 1}}{\mu} \sum \varepsilon_{\mathrm{P} i} v_{i}-\frac{\varepsilon_{\mathrm{R} 1} c_{\mathrm{R} 1}}{\mu}\right)=\varepsilon_{\mathrm{R} 2} c_{\mathrm{R} 1} \xi_{\mathrm{c}}+\left(c_{\mathrm{R} 1} \sum \varepsilon_{\mathrm{P} i} v_{i}-\mu \varepsilon_{\mathrm{R} 2} c_{\mathrm{R} 1}\right) \tag{S9}
\end{equation*}
$$

This equation can be simplified by division with $c_{\mathrm{R} 1}$ and then re-arranged to give:

$$
\begin{equation*}
\xi_{\mathrm{c}}\left(\frac{1}{\mu} \sum \varepsilon_{\mathrm{P} i} v_{i}-\frac{\varepsilon_{\mathrm{R} 1}}{\mu}-\varepsilon_{\mathrm{R} 2}\right)=\sum \varepsilon_{\mathrm{P} i} v_{i}-\mu \varepsilon_{\mathrm{R} 2}-\varepsilon_{\mathrm{R} 1} \tag{S10}
\end{equation*}
$$

Then a simple division gives the ξ_{c} value where the intersection of the two straight lines occurs:

$$
\begin{equation*}
\xi_{\mathrm{c}}=\mu \tag{S11}
\end{equation*}
$$

Therefore, the intersection of the two straight lines gives the stoichiometric coefficient of reagent R_{2}. A plot based on this method is given in Eq. 2 of the main article.

Fig. S1 Stoichiometry determination in the oxidation of isoniazid with hypochlorite ion by spectrophotometric titration. Initial sample: $[\mathrm{INH}]=0.30 \mathrm{mM}$. Titrant concentration $\left[\mathrm{OCl}^{-}\right]=$ $1.0 \mathrm{mM} .\left[\mathrm{OH}^{-}\right]=10 \mathrm{mM}, \mathrm{T}=25^{\circ} \mathrm{C}, l=1.00 \mathrm{~cm}$. Titrant increment volume: $100 \mu 1$. The letter A represents absorbance.

Fig. S2 Stoichiometry determination in the oxidation of isoniazid with hypochlorite ion by spectrophotometric titration. Initial sample: $\left[\mathrm{OCl}^{-}\right]=0.64 \mathrm{mM}$. Titrant concentration: $[\mathrm{INH}]=$ $1.00 \mathrm{mM} .\left[\mathrm{OH}^{-}\right]=10 \mathrm{mM}, \mathrm{T}=25^{\circ} \mathrm{C}, l=1.00 \mathrm{~cm}$. Titrant increment volume: $100 \mu \mathrm{l}$. The letter A represents absorbance.

Fig. S3 Stoichiometry determination in the oxidation of isoniazid with hypochlorite ion by spectrophotometric titration. $\left[\mathrm{OH}^{-}\right]_{\mathrm{T}}=10.0 \mathrm{mM}, T=25^{\circ} \mathrm{C}, l=1.00 \mathrm{~cm}$. For red points: Initial sample: $\left[\mathrm{OCl}^{-}\right]=0.64 \mathrm{mM}$. Titrant concentration: $[\mathrm{INH}]=1.00 \mathrm{mM} .\left[\mathrm{OH}^{-}\right]=10 \mathrm{mM}, \mathrm{T}=25$ ${ }^{\circ} \mathrm{C}, l=1.00 \mathrm{~cm}$. Titrant increment volume: 100μ. For blue points: Initial sample: [INH] = 0.30 mM . Titrant concentration $\left[\mathrm{OCl}^{-}\right]=1.0 \mathrm{mM} .\left[\mathrm{OH}^{-}\right]=10 \mathrm{mM}, \mathrm{T}=25^{\circ} \mathrm{C}, l=1.00 \mathrm{~cm}$. Titrant increment volume: 100μ.

Fig. S4 Absorbance correlation plot between data measured at 260 and 320 nm from the spectral stopped-flow experiments shown in Fig. 1 during the oxidation of isoniazid with hypochlorite ion. $[\mathrm{INH}]=0.50 \mathrm{mM},\left[\mathrm{OCl}^{-}\right]=1.0 \mathrm{mM},\left[\mathrm{OH}^{-}\right]_{\mathrm{T}}=10.0 \mathrm{mM}, T=25.0^{\circ} \mathrm{C}, l=$ $1.00 \mathrm{~cm} ; t=0.01,0.05,0.1,0.15,0.2,0.3,0.4,0.5,1.0,2.0 \mathrm{~s}$. The letter A represents absorbance.

Fig. S5 Spectral observations in the oxidation of isonicotinic acid with hypochlorite ion. $[$ INA $]=0.50 \mathrm{mM},\left[\mathrm{OCl}^{-}\right]=0.50 \mathrm{mM},\left[\mathrm{OH}^{-}\right]_{\mathrm{T}}=10.0 \mathrm{mM}, T=25^{\circ} \mathrm{C}, l=1.00 \mathrm{~cm}$, total experiment time: 50 minutes. The letter A represents absorbance.

Fig. S6 Spectral observations in the oxidation of isonicotinic amide with hypochlorite ion. $[\mathrm{INM}]=0.50 \mathrm{mM},\left[\mathrm{OCl}^{-}\right]=0.50 \mathrm{mM},\left[\mathrm{OH}^{-}\right]_{\mathrm{T}}=10.0 \mathrm{mM}, T=25^{\circ} \mathrm{C}, l=1.00 \mathrm{~cm}$, total experiment time: 50 minutes. Consecutive spectra are recorded in every 3.5 min . The letter A represents absorbance.

Fig. S7 NMR spectra: isoniazid in basic medium (a), isoniazid with excess NaOCl after the completion of the reaction (b), spectrum $b+$ isonicotinic acid (c)

Fig. S8 Initial rate as a function of chloride concentration in th reaction of isoniazid with hypochlorite ion. $[\mathrm{INH}]=0.50 \mathrm{mM},\left[\mathrm{OCl}^{-}\right]=1.00 \mathrm{mM},\left[\mathrm{OH}^{-}\right]_{\mathrm{T}}=10.0 \mathrm{mM}, T=25.0^{\circ} \mathrm{C}, l=$ 1.00 cm .

Fig. S9 UV-vis spectrum of isoniazid at different hydroxide ion concentrations. [INH] $=0.50$ $\mathrm{mM}, T=25{ }^{\circ} \mathrm{C}, l=1.00 \mathrm{~cm}$. The letter A represents absorbance.

Table S1 Results from the initial rate calculations

Fig. S10 Example of fitting experimental data to Eq. 17. $[\mathrm{INH}]=0.50 \mathrm{mM},\left[\mathrm{OCl}^{-}\right]=1.00$ $\mathrm{mM},\left[\mathrm{OH}^{-}\right]_{\mathrm{T}}=10.0 \mathrm{mM}, T=25.0^{\circ} \mathrm{C}, l=1.00 \mathrm{~cm}$. The letter A represents absorbance.

Table S2 Parameters determined from the numerical fitting using Eq. 19

$[\mathrm{INH}]_{0}$	$[\mathrm{OCl}]_{0}$	[OH$]_{0}$	P1	stdev	P2	stdev	P3	stdev	P4	stdev
mM	mM	mM	dimensionless		s^{-1}	s^{-1}	dimensionless		dimensionless	
0.50	1.00	50	0.077	0.002	0.426	0.009	0.945	0.001	0.2558	0.0002
0.50	1.25	50	0.04727	0.002	0.35	0.01	0.97	0.001	0.265	0.0003
0.50	1.15	50	0.06775	0.002	0.42	0.01	0.953	0.001	0.255	0.0003
0.50	0.85	50	0.05285	0.0007	0.228	0.003	0.9574	0.0005	0.257	0.0001
0.50	1.50	50	0.44	0.008	3.2	0.04	0.684	0.007	0.2975	0.0003
0.50	1.30	50	0.337	0.005	2.16	0.02	0.746	0.004	0.28	0.0002
0.50	0.75	50	0.0408	0.0001	0.1502	0.0005	0.9682	0.0001	0.31837	0.00004
0.85	1.00	50	0.3122	0.0009	1.554	0.003	0.771	0.001	1.104	0.001
0.75	1.00	50	0.1532	0.0003	0.633	0.001	0.896	0.0002	0.6643	0.0001
0.60	1.00	50	0.0576	0.0006	0.233	0.002	0.9618	0.0004	0.361	0.0001
0.50	1.00	50	0.071	0.001	0.34	0.005	0.9493	0.0009	0.2847	0.0002
0.40	1.00	50	0.079	0.002	0.52	0.02	0.934	0.002	0.209	0.0002
0.25	1.00	50	0.044	0.002	0.55	0.02	0.945	0.002	0.1453	0.0002
0.10	1.00	50	0.0083	0.0006	0.27	0.02	0.977	0.002	0.1391	0.0001

