Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supplementary Information

for

Kinetics of the Oxidation of Isoniazid with Hypochlorite Ion

Virág Bogdándi, Gábor Lente* and István Fábián

Department of Inorganic and Analytical Chemistry, University of Debrecen, Debrecen,

Hungary

Derivation of the absorbance for spectrophotometric titration:

Suppose that a general reaction with the following stoichiometry is investigated by spectrophotometric titration:

$$\mathbf{R}_1 + \mu \mathbf{R}_2 \to \sum \mathbf{v}_i \mathbf{P}_i \tag{S1}$$

The stoichiometric coefficient of R_1 is set 1, this can always be achieved by normalizing the equation (as a consequence, the rest of the coefficients, μ and v_i are not necessarily integers). A titration is carried out by selecting a suitable volume of the solution (V_{ini}) of reagent R_1 with concentration c_{R1} and adding the titrant solution of R_2 with concentration c_{R2} gradually. The initial amount of substance for reagent A is $V_{ini}c_{R1}$ for the entire titration. After the addition of titrant solution with volume V, the amount of substance for reagent R_2 is given as Vc_{R2} . There are two cases:

1. If a relatively low amount of titrant R₂ has been added, reagent A remains in excess. The final concentration of R₂ is $[R_2] = 0$, the concentration of remaining R₁ is $[R_1] = (V_{ini}c_{R1} - Vc_{R2}/\mu)/(V_{ini} + V)$. The concentrations of the products are $[P_i] = v_i /\mu \times Vc_{R2}/(V_{ini} + V)$. According to Beer's law, each substance present can contribute to the absorbance. The molar absorptivity of R₁ is ε_{R1} , the molar absorptivity R₂ is ε_{R2} , the molar absorptivity of product P_i is ε_{Pi} . Therefore, the absorbance reading after the addition of titrant solution with volume V is given as:

$$A = \varepsilon_{\text{R1}}[\text{R}_1] + \varepsilon_{\text{R2}}[\text{R}_2] + \sum \varepsilon_{\text{Pi}}[\text{P}_i] = \varepsilon_{\text{R2}} \frac{V_{\text{ini}}c_{\text{R1}} - Vc_{\text{R2}} / \mu}{V_{\text{ini}} + V} + \sum \frac{\varepsilon_{\text{Pi}}v_i Vc_{\text{R2}}}{\mu(V_{\text{ini}} + V)}$$
(S2)

The dilution (η) was defined in the main text as $\eta = (V + V_{ini})/V_{ini}$. The molar ratio of the two reactants (ξ) is simply given as $\xi = Vc_B/(V_{ini}c_A)$. With these new quantities, Eq. S2 can be successively re-arranged as follows:

$$\frac{V_{\text{ini}} + V}{V_{\text{ini}}} A = \varepsilon_{\text{R1}} c_{\text{R1}} - \frac{\varepsilon_{\text{R1}} V c_{\text{R2}}}{\mu V_{\text{ini}}} + \sum \frac{\varepsilon_{\text{Pi}} v_i V c_{\text{R2}}}{\mu V_{\text{ini}}}$$
(S3)

$$\eta A = \varepsilon_{\rm R1} c_{\rm R1} - \xi \frac{\varepsilon_{\rm R1} c_{\rm R1}}{\mu} + \frac{\xi c_{\rm R1}}{\mu} \sum \varepsilon_{\rm Pi} v_i \tag{S4}$$

$$\eta A = \varepsilon_{\rm R1} c_{\rm R1} + \zeta \left(\frac{c_{\rm R1}}{\mu} \sum \varepsilon_{\rm Pi} v_i - \frac{\varepsilon_{\rm R1} c_{\rm R1}}{\mu} \right) \tag{S5}$$

Therefore, if ηA is plotted as a function of ξ , a straight line is expected with intercept $\varepsilon_{R1}c_{R1}$ and slope $\left(\frac{c_{R1}}{\mu}\sum_{P_i} \varepsilon_{P_i}v_i - \frac{\varepsilon_{R1}c_{R1}}{\mu}\right)$.

2. If reagent R₂ has been added by excess, then R₁ is not present any more $[R_1] = 0$. The concentration of remaining R₂ is $[R_2] = (Vc_{R2} - \mu V_{ini}c_{R1})/(V_{ini} + V)$, whereas the concentrations of the products are $[P_i] = v_i V_{ini} c_{R1}/(V_{ini} + V)$. The absorbance signal then equals to:

$$A = \varepsilon_{\rm A}[{\rm R}_1] + \varepsilon_{\rm B}[{\rm R}_2] + \sum \varepsilon_{\rm Pi}[{\rm P}_i] = \varepsilon_{\rm R2} \frac{Vc_{\rm R2} - \mu V_{\rm ini}c_{\rm R1}}{V_{\rm ini} + V} + \sum \frac{\varepsilon_{\rm Pi}v_iV_{\rm ini}c_{\rm R1}}{(V_{\rm ini} + V)}$$
(S6)

As in the previous case, this equation can be successively re-arranged as follows:

$$\frac{V_{\text{ini}} + V}{V_{\text{ini}}} A = \frac{\varepsilon_{\text{R2}} V c_{\text{R2}}}{V_{\text{ini}}} - \mu \varepsilon_{\text{R2}} c_{\text{R1}} + c_{\text{R1}} \sum \varepsilon_{\text{Pi}} v_i$$
(S7)

$$\eta A = \varepsilon_{\rm R2} c_{\rm R1} \zeta + \left(c_{\rm R1} \sum \varepsilon_{\rm Pi} v_i - \mu \varepsilon_{\rm R2} c_{\rm R1} \right) \tag{S8}$$

Again, if η Abs is plotted as a function of ξ , a straight line is expected with intercept $(c_{R1}\sum \varepsilon_{Pi}v_i - \mu\varepsilon_{R1}c_{R2})$ and slope $\varepsilon_{R2}c_{R1}$.

Therefore, it has been established that the points in the plot will lie on either of the two straight lines depending on whether they have been measured at an excess of R_1 or R_2 . The common point (intersection) of the straight lines is found at the value of ξ_c where the ηA values are equal.

$$\varepsilon_{\rm R1}c_{\rm R1} + \xi_{\rm c} \left(\frac{c_{\rm R1}}{\mu} \sum \varepsilon_{\rm Pi}v_i - \frac{\varepsilon_{\rm R1}c_{\rm R1}}{\mu}\right) = \varepsilon_{\rm R2}c_{\rm R1}\xi_{\rm c} + \left(c_{\rm R1} \sum \varepsilon_{\rm Pi}v_i - \mu\varepsilon_{\rm R2}c_{\rm R1}\right)$$
(S9)

This equation can be simplified by division with c_{R1} and then re-arranged to give:

$$\xi_{\rm c} \left(\frac{1}{\mu} \sum \varepsilon_{\rm Pi} v_i - \frac{\varepsilon_{\rm R1}}{\mu} - \varepsilon_{\rm R2} \right) = \sum \varepsilon_{\rm Pi} v_i - \mu \varepsilon_{\rm R2} - \varepsilon_{\rm R1} \tag{S10}$$

Then a simple division gives the ξ_c value where the intersection of the two straight lines occurs:

$$\xi_{\rm c} = \mu \tag{S11}$$

Therefore, the intersection of the two straight lines gives the stoichiometric coefficient of reagent R_2 . A plot based on this method is given in Eq. 2 of the main article.

Fig. S1 Stoichiometry determination in the oxidation of isoniazid with hypochlorite ion by spectrophotometric titration. Initial sample: [INH] = 0.30 mM. Titrant concentration $[OCI^-] = 1.0 \text{ mM}$. $[OH^-] = 10 \text{ mM}$, T = 25 °C, l = 1.00 cm. Titrant increment volume: 100 µl. The letter *A* represents absorbance.

Fig. S2 Stoichiometry determination in the oxidation of isoniazid with hypochlorite ion by spectrophotometric titration. Initial sample: $[OCl^-] = 0.64$ mM. Titrant concentration: [INH] = 1.00 mM. $[OH^-] = 10$ mM, T = 25 °C, l = 1.00 cm. Titrant increment volume: 100 µl. The letter *A* represents absorbance.

Fig. S3 Stoichiometry determination in the oxidation of isoniazid with hypochlorite ion by spectrophotometric titration. $[OH^-]_T = 10.0 \text{ mM}, T = 25 \text{ °C}, l = 1.00 \text{ cm}.$ For red points: Initial sample: $[OCl^-] = 0.64 \text{ mM}.$ Titrant concentration: [INH] = 1.00 mM. $[OH^-] = 10 \text{ mM}, T = 25 \text{ °C}, l = 1.00 \text{ cm}.$ Titrant increment volume: $100 \mu l.$ For blue points: Initial sample: [INH] = 0.30 mM. Titrant concentration $[OCl^-] = 1.0 \text{ mM}, T = 25 \text{ °C}, l = 1.00 \text{ cm}.$ Titrant increment volume: $100 \mu l.$ For blue points: Initial sample: [INH] = 0.30 mM. Titrant concentration $[OCl^-] = 1.0 \text{ mM}.$ $[OH^-] = 10 \text{ mM}, T = 25 \text{ °C}, l = 1.00 \text{ cm}.$ Titrant increment volume: $100 \mu l.$

Fig. S4 Absorbance correlation plot between data measured at 260 and 320 nm from the spectral stopped-flow experiments shown in Fig. 1 during the oxidation of isoniazid with hypochlorite ion. [INH] = 0.50 mM, $[OCI^-] = 1.0 \text{ mM}$, $[OH^-]_T = 10.0 \text{ mM}$, T = 25.0 °C, l = 1.00 cm; t = 0.01, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 1.0, 2.0 s. The letter *A* represents absorbance.

Fig. S5 Spectral observations in the oxidation of isonicotinic acid with hypochlorite ion. [INA] = 0.50 mM, $[OCI^-] = 0.50 \text{ mM}$, $[OH^-]_T = 10.0 \text{ mM}$, T = 25 °C, l = 1.00 cm, total experiment time: 50 minutes. The letter *A* represents absorbance.

Fig. S6 Spectral observations in the oxidation of isonicotinic amide with hypochlorite ion. [INM] = 0.50 mM, $[OCl^-] = 0.50$ mM, $[OH^-]_T = 10.0$ mM, T = 25 °C, l = 1.00 cm, total experiment time: 50 minutes. Consecutive spectra are recorded in every 3.5 min. The letter *A* represents absorbance.

Fig. S7 NMR spectra: isoniazid in basic medium (a), isoniazid with excess NaOCl after the completion of the reaction (b), spectrum b + isonicotinic acid (c)

Fig. S8 Initial rate as a function of chloride concentration in th reaction of isoniazid with hypochlorite ion. [INH] = 0.50 mM, $[OCI^-] = 1.00 \text{ mM}$, $[OH^-]_T = 10.0 \text{ mM}$, T = 25.0 °C, l = 1.00 cm.

Fig. S9 UV-vis spectrum of isoniazid at different hydroxide ion concentrations. [INH] = 0.50 mM, T = 25 °C, l = 1.00 cm. The letter *A* represents absorbance.

[INH]	$[OCI^{-}]_{0}$	[OH ⁻] ₀	v_0/A_0		k		
mM	mM	mM	S ⁻¹	5-1			
0.5	1	0.5	19.53363		25284.76		
0.5	1	1.5	13.8846		26148.39		
0.5	1	4.5	8.63694		31523.07		
0.5	1	9.5	3.77325		24880.87		
0.5	1	24.5	1.80293		27813.21		
0.5	1	49.5	1.17333		35373.27		
0.5	1	74.5	0.77231		34652.66		
0.5	1	99.5	0.63123		37614.96		
0.5	1	109.5	0.64663		42340.29		
0.5	1	124.5	0.53473		39736.34		
0.5	0.1	49.5	0.102485		30896.95		
0.5	0.17	49.5	0.199074		35303.69		
0.5	0.19	49.5	0.223895		35525.93		
0.5	0.22	49.5	0.264271		36214.46		
0.5	0.5	49.5	0.623053		37567.31		
0.5	0.75	49.5	1.033162		41530.02		
0.5	0.9	49.5	1.210784		40558.24		
0.5	1	49.5	1.299567		39179.03		
0.5	1.2	49.5	1.604495		40309.94		
0.5	0.1	9.5	0.284811		18780.48		
0.5	0.25	9.5	0.687023		18120.96		
0.5	0.5	9.5	1.623896		21415.99		
0.5	0.75	9.5	2.74202		24107.9		
0.5	0.85	9.5	3.059353		23733.44		
0.5	1	9.5	3.826806		25234.01		
0.5	1.15	9.5	4.122397		23637.52		
0.5	1.25	9.5	4.746321		25037.85		
0.5	1.3	9.5	4.611849		23392.77		
0.5	1.5	9.5	5.435251		23893.42		
0.01	1	9.99	1.474364		10147.38		
0.04	1	9.96	1.455027		9988.591		
0.1	1	9.9	2.015355		13763.97		
0.25	1	9.75	1.8715		12616.2		
0.4	1	9.6	1.804491		12005.1		
0.5	1	9.5	1.779371		11733.2		
0.05	1	9.95	4.162892		28553.25		
0.1	1	9.9	4.211765		28764.47		
0.25	1	9.75	3.938888		26552.93		
0.4	1	9.6	3.792327		25229.97		
0.5	1	9.5	3.585647		23643.81		
				average	34061.69		

Table S1 Results from the initial rate calculations

standard deviation 7206.428

Fig. S10 Example of fitting experimental data to Eq. 17. [INH] = 0.50 mM, $[OCl^-] = 1.00$ mM, $[OH^-]_T = 10.0$ mM, T = 25.0 °C, l = 1.00 cm. The letter *A* represents absorbance.

Table S2 Parameters determined from the numerical fitting using	Eq. 1	19
--	-------	----

[INH] ₀	[OCI⁻] ₀	[OH⁻] ₀	P1	stdev	P2	stdev	Р3	stdev	P4	stdev
mM	mM	mM	dimensionless		S ⁻¹	S ⁻¹	dimensionless		dimensionless	
0.50	1.00	50	0.077	0.002	0.426	0.009	0.945	0.001	0.2558	0.0002
0.50	1.25	50	0.04727	0.002	0.35	0.01	0.97	0.001	0.265	0.0003
0.50	1.15	50	0.06775	0.002	0.42	0.01	0.953	0.001	0.255	0.0003
0.50	0.85	50	0.05285	0.0007	0.228	0.003	0.9574	0.0005	0.257	0.0001
0.50	1.50	50	0.44	0.008	3.2	0.04	0.684	0.007	0.2975	0.0003
0.50	1.30	50	0.337	0.005	2.16	0.02	0.746	0.004	0.28	0.0002
0.50	0.75	50	0.0408	0.0001	0.1502	0.0005	0.9682	0.0001	0.31837	0.00004
0.85	1.00	50	0.3122	0.0009	1.554	0.003	0.771	0.001	1.104	0.001
0.75	1.00	50	0.1532	0.0003	0.633	0.001	0.896	0.0002	0.6643	0.0001
0.60	1.00	50	0.0576	0.0006	0.233	0.002	0.9618	0.0004	0.361	0.0001
0.50	1.00	50	0.071	0.001	0.34	0.005	0.9493	0.0009	0.2847	0.0002
0.40	1.00	50	0.079	0.002	0.52	0.02	0.934	0.002	0.209	0.0002
0.25	1.00	50	0.044	0.002	0.55	0.02	0.945	0.002	0.1453	0.0002
0.10	1.00	50	0.0083	0.0006	0.27	0.02	0.977	0.002	0.1391	0.0001