Facile hydrothermal synthesis of tubular kapok fiber/MnO₂ hybrid composites and application in supercapacitors

Weibing Xu^{,ab} Bin Mu,^a Wenbo Zhang^a and Aiqin Wang,^{a*}

^a* State Key Laboratory of Solid Lubrication, Center of Eco-Materials and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

^b University of the Chinese Academy of Sciences, Beijing 100049, P.R. China.

Fig.S1 FTIR spectra of TKF/MnO₂-1, TKF/MnO₂-2, TKF/MnO₂-3 and TKF/MnO₂-4 composites

Fig.S2 XRD spectra of TKF/MnO₂-1, TKF/MnO₂-2, TKF/MnO₂-3 and TKF/MnO₂-4 composites

Fig.S3 FTIR spectra of TKF/MnO_2-5, TKF/MnO_2-6, TKF/MnO_2-7, TKF/MnO_2-2 and

TKF/MnO₂-8 composites

Fig.S4 XRD spectra of TKF/MnO₂-5, TKF/MnO₂-6, TKF/MnO₂-7, TKF/MnO₂-2 and

TKF/MnO₂-8 composites

Fig.S5 FTIR spectra of TKF-100, TKF-120, TKF -140, and TKF-160

Fig.S6 Digital photos of the hydrothermally treated TKF and TKF/MnO₂ composites prepared at different hydrothermal temperature: (a) TKF-160, (b) TKF/MnO₂-11, (c) TKF-140, (d) TKF/MnO₂-6 (e) TKF -120, (f) TKF/MnO₂-10, (g) TKF-100, and (h) TKF/MnO₂-9

Fig.S7 FTIR spectra of TKF/MnO₂-6, TKF/MnO₂-9, TKF/MnO₂-10 and TKF/MnO₂-11

Fig.S8 XRD spectra of TKF/MnO₂-6, TKF/MnO₂-9, TKF/MnO₂-10 and TKF/MnO₂-11

composites

Fig.S9 SEM images of TKF/MnO₂-11

Fig.S10 (a-d) Element mapping images of TKF/MnO₂-5 (e) EDX pattern of

TKF/MnO₂-5, the inset shows the atomic ratio of Mn, O and C

Fig.S11 (a-d) Element mapping images of TKF/MnO₂-7 (e) EDX pattern of

TKF/MnO₂-7, the inset shows the atomic ratio of Mn, O and C

Fig.S12 (a) N₂ adsorption/desorption isotherms and (b) BJH pore size distribution of TKF/MnO₂-

2, $5 \sim 11$ composites

Fig.S13 (a) CV curves at different scan rates, (b) GCD curves at different current density for the TKF/MnO₂-2 composite in 1 M Na₂SO₄ electrolyte

Fig.S14 (a) CV curves at different scan rates, (b) GCD curves at different current density for the TKF/MnO₂-5 composite in 1 M Na₂SO₄ electrolyte

Fig.S15 (a) CV curves at different scan rates, (b) GCD curves at different current density for the TKF/MnO₂-7 composite in 1 M Na₂SO₄ electrolyte

Fig.S16 (a) CV curves at different scan rates, (b) GCD curves at different current density for the TKF/MnO₂-8 composite in 1 M Na₂SO₄ electrolyte

Fig.S17 (a) CV curves at different scan rates, (b) GCD curves at different current density for the TKF/MnO₂-9 composite in 1 M Na₂SO₄ electrolyte

Fig.S18 (a) CV curves at different scan rates, (b) GCD curves at different current density for the TKF/MnO₂-10 composite in 1 M Na₂SO₄ electrolyte

Fig.S19 (a) CV curves at different scan rates, (b) GCD curves at different current density for the TKF/MnO₂-11 composite in 1 M Na₂SO₄ electrolyte

Sample	$^{a}S_{BET}(\mathrm{m}^{2}/\mathrm{g})$	${}^{b}S_{ext}$ (m ² /g)	$^{c}V_{tot}(\mathrm{cm}^{3}/\mathrm{g})$
TKF	0.8875	-	0.0012
TKF/MnO ₂ -5	65.97	107.37	0.0941
TKF/MnO ₂ -6	222.41	261.93	0.4962
TKF/MnO ₂ -7	20.66	24.19	0.0520
TKF/MnO ₂ -2	18.19	34.51	0.0431
TKF/MnO ₂ -8	12.30	15.15	0.0335
TKF/MnO ₂ -9	6.63	9.32	0.0143
TKF/MnO ₂ -10	23.25	25.67	0.0681
TKF/MnO ₂ -11	39.15	47.00	0.0057

Table S1. N2 adsorption/desorption analyses of TKF and TKF/MnO2 composites

^{*a*} BET (Brunauer-Emmett-Teller) surface area, ^{*b*} External surface area, calculated using *t*-plot method, ^{*c*} Total pore volume, measured at $P/P_0 = 0.975$

Table S2 Comparison of capacitive performance of the supercapacitors based on various Natural

Sample	C _{max}	Ref
Cotton fiber/SWNT-MnO ₂	210 F g ⁻¹	[1]
Carbon fiber/MnO ₂	0.41 F cm ⁻² ,	[2]
Carbon fiber/MnO ₂	110 F g ⁻¹	[3]
Textile fiber/graphene/MnO ₂	315 F g ⁻¹	[4]
Polyester fibers/CNT/MnO ₂	2.8 F cm ⁻²	[5]
Carbon/MnO ₂	190 F g ⁻¹	[6]
Cotton fiber/ SWNT	70 F g ⁻¹	[7]
Activated carbon textile/MnO ₂	70 F g ⁻¹	[8]
Cotton lawn	83 F g ⁻¹	[9]
Cotton-based carbon fibers	355 F g ⁻¹	[10]
Cotton fiber/PPy/LGS	304 F g ⁻¹	[11]
Bacterial cellulose/PANI	273 F g ⁻¹	[12]
Cellulose Fiber/CNT/MnO ₂ /CNT	290 F g ⁻¹	[13]
Cotton fiber/PPy	268 F g ⁻¹	[14]
Cellulose fiber/PANI/silver	176 mF/cm ²	[15]
Cellulose fiber/reduced graphene oxide/carbon nanotube	252 F g ⁻¹	[16]
PPy-MnO ₂ -CNT-cotton	38.6 mF cm ⁻² (two electrode)	[17]
PPy/cotton fiber	52 F g ⁻¹	[18]
PPy/bacterial cellulose	459.5 F g ⁻¹ .	[19]
Au/PPy cotton fabric	254.9 F g ⁻¹	[20]
Kapok fiber/MnO ₂	117 F g ⁻¹	This work

fiber composites presented in literature and the present work.

C_{max}, maximum specific capacitance

- L. B. Hu, M. Pasta, F. L. Mantia, L. F. Cui, S. Jeong , H. D. Deshazer, J. W. Cho, S. M. Han, Y. Cui, *Nano letters*, 2010, **10**,708-714.
- X. Xiao, T. Q. Li, P. H. Yang, Y. Gao, H. Y. Jin, W. J. Ni, W. H. Zhan, X. H. Zhang, Y. Z. Cao, J. W. Zhong, L. Gong, W. C. Yen, W. J. Mai, J. Chen, K.F. Huo, Y. L. Chu, Z. L. Wang, J. Zhou, *Acs Nano*, 2012, 6, 9200-9206.
- 3 A. E. Fischer, K. A. Pettigrew, D. R. Rolison, R. M. Stroud, J. W. Long, *Nano Letters*, 2007, 7, 281-286.
- 4 G. H. Yu, L. B. Hu, M. Vosgueritchian, H. L. Wang, X. Xie , J. R. McDonough, X. Cui , Y. Cui, Z. N. Bao. *Nano letters*, 2011, 11, 2905-2911.
- 5 L. B. Hu, W. Chen, X. Xie, N. Liu, Y. Yang, H. Wu, Y. Yao, M. Pasta, H. N. Alshareef, Y. Cui, *Acs Nano*, 2011, 5, 8904-8913.
- 6 J. K. Chang, C. T. Lin, W. T. Tsai, Electrochemistry communications, 2004, 6, 666-671.
- 7 M. Pasta, F. L. Mantia, L.B. Hu, H. D. Deshazer, Y. Cui, Nano Research, 2010, 3, 452-458.
- 8 L. H. Bao, X, D. Li, Advanced Materials, 2012, 24, 3246-3252.
- 9 K. Jost, C. R. Perez, J. K. McDonough, V. Presser, M. Heon, G. Dion, Y. Gogotsi, *Energy & Environmental Science*, 2011, 4, 5060-5067.
- 10 S. G. Wang, Z. H. Ren, J. P. Li, Y. Q. Ren, L. Zhao, J. Yu. RSC Advances, 2014, 4, 31300-31307.
- 11 L. G. Zhu, L. Wu, Y. Y. Sun, M. X. Li, J. Xu, Z.K. Bai, G. J. Liang, L. Liu, D. Fang, W. L. Xu C, *RSC Advances*, 2014, 4, 6261-6266.
- 12 H. H. Wang, E. W. Zhu, J.Z. Yang, P. P. Zhou, D. P. Sun, W. H. Tang, *The Journal of Physical Chemistry C*, 2012, **116**, 13013-13019.
- 13 Z. Gui, H. L.Zhu, E. Gillette, X. G. Han, G. W. Rubloff, L. B. Hu, S. B. Lee, *ACS nano*, 2013, 7, 6037-6046.
- 14 K. F. Babu, S. P. S. Subramanian, M. A. Kulandainathan, *Carbohydrate polymers*, 2013, 94, 487-495.
- 15 X. D. Zhang, Z. Y. Lin, B. Chen, W. Zhang, S. Sharmad, W. T. Gu, Y. L. Deng, *Journal of Power Sources*, 2014, 246, 283-289.

- 16 Q. F. Zheng, Z. Y. Cai, Z. Q. Ma, S. Q. Gong, ACS applied materials & interfaces, 2015, 7, 3263–3271.
- 17 N. S. Liu, W. Z. Ma, J. Y. Tao, X. H. Zhang, J. Su, L.Y. Li, C. X. Yang, Y. H. Gao, D. Golberg, Y. Bando, *Advanced Materials*, 2013, 25, 4925-4931.
- 18 G. J. Liang, L. G. Zhu, J. Xu, D. Fang, Z. K. Bai, W. L. Xu, *Electrochimica Acta*, 2013, 103, 9-14.
- 19 J. Xua, L. G. Zhu, Z. K. Bai, G. J. Liang, L. Liu, D. Fang, W. L. Xu, Organic Electronics, 2013, 14, 3331-3338.
- 20 B. B. Yue, C. Y. Wang, X. Ding, G. G. Wallace, *Electrochimica Acta*, 2013, 113, 17-22.