Supporting information

A fluorescence on-off sensor for Cu²⁺ and its resultant complex as off-on sensor

for Cr³⁺ in aqueous media

Yunling Gao^{a*}, Jieming Shu^a, Cong Zhang^a, Xiang Zhang^b, Haiyan Chen^{c**}, Kejian Yao^{a*}

^a State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Chemical

Engineering, Zhejiang University of Technology, Hangzhou 310032, China.

^b School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China.

^c Department of Biomedical Engineering, School of Life Science and Technology, State Key Laboratory of Natural

Medicines, China Pharmaceutical University, Nanjing 210009, China.

*E-mail: gaoyl@zjut.edu.cn; yaokj@zjut.edu.cn, Tel: +86-571-88320951;

**Email: chenhaiyan@cpu.edu.cn, Tel: +86-25-83271080

Fig. S1. Benesi-Hildebrand plot of the sensor 1 and Cu^{2+} (top) and the linear fitting of the fluorescence intensity of the sensor 1 toward the concentration of Cu^{2+} (bottom).

Fig. S2. Absorption changes of the sensor 1 (10 μ M) upon addition of 3.0 equiv. of individual metal ions in 0.1 M HEPES-DMSO (9:1, v/v, pH = 7.2) solution.

Fig. S3. Influences of pH on the fluorescence intensity of the sensor 1 (10 μ M) and the sensor 1 plus Cu²⁺ (30 μ M) in 0.1 M HEPES-DMSO (9:1, v/v, pH = 7.2) solution.

Fig. S4. Fluorescence response of the sensor **1** (10 μ M) and Cu²⁺ (30 μ M) in the presence of other different metal ions (30 μ M) in 0.1 M HEPES-DMSO (9:1, v/v, pH = 7.2) solution. 1: Cu²⁺, 2: Zn²⁺, 3: Al³⁺, 4: Na⁺, 5: Fe³⁺, 6: Ca²⁺, 7: Ag⁺, 8: Cd²⁺, 9: K⁺, 10: Mg²⁺, 11: Ni²⁺, 12: Co²⁺, 13:Pb²⁺, 14: Hg²⁺.

Fig. S5. Fluorescence changes of the sensor **1** (10 μ M) upon sequential addition of 3.0 equiv. of Cu²⁺ and 3.0 equiv. of Cr³⁺ in 0.1 M HEPES-DMSO (9:1, v/v, pH = 7.2) solution (dark line for the sensor **1**, red line for 1+Cu²⁺, blue line for 1+Cu²⁺+Cr³⁺).

Fig. S6. Benesi-Hildebrand plot of $1-Cu^{2+}$ with Cr^{3+} (top) and the linear fitting of the fluorescence intensity of $1-Cu^{2+}$ toward the concentration of Cr^{3+} (bottom).

Fig. S7. Absorption changes of 1-Cu²⁺ (13 μ M) upon addition of different equivalents of Cr³⁺ (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0 equiv.) in 0.1 M HEPES-DMSO (9:1, v/v, pH = 7.2) solution. Inset: a plot of the maximum absorption change at 451 nm against different equivalents of Cr³⁺.

Fig. S8. ¹H NMR spectra of the sensor 1 in the presence of Cu^{2+} and Cr^{3+} in DMSO-d₆.

Fig. S9. HRMS for the sensor 1 (top) and $1-Cu^{2+}$ complex (bottom).

Fig. S10. XPS spectra of O1s and N1s of the sensor 1 and $1-Cu^{2+}$.

Fig. S11. FT-IR spectra of 1-Cu²⁺ with Cr^{3+} and 1-Cr³⁺ using the KBR compression method (top); FT-IR spectra of 1-Cu²⁺ and 1-Cr³⁺ in DMSO (bottom).

DFT-optimized structure of the sensor 1

Cartesian coordinate:

C	4 55210000	1 50222 (00	0 0171 4000
C	4.55318900	-1.50332600	-0.21714800
C	3.27519300	-2.00768900	-0.15992600
С	2.14686700	-1.16411900	-0.15175500
С	2.38765400	0.22133600	-0.20055000
С	3.66394200	0.75434900	-0.25696100
С	4.79034600	-0.09662600	-0.28136300
Н	0.56650000	-2.65882400	-0.04796200
Н	5.38119800	-2.19581800	-0.21057400
Н	3.12506000	-3.08089800	-0.11596800
С	0.79973400	-1.60006400	-0.08937200
Н	3.74971600	1.82972800	-0.27873300
С	0.00721800	0.70831200	-0.13168500
С	-0.25014600	-0.72579500	-0.07925500
Ν	6.06579900	0.40873200	-0.37573500
С	7.23689800	-0.47135700	-0.38772100
Н	8.04385100	0.07894100	-0.87616900
Н	7.03195300	-1.33155800	-1.03063600
С	6.30308700	1.85367200	-0.43068800
Н	7.27099400	2.00138600	-0.91450400
Н	5.56377100	2.30946800	-1.09492100
0	-0.80433300	1.60255200	-0.13141200
С	-1.63061300	-1.32202200	-0.01089900
0	-1.76087000	-2.53992400	0.03729500
0	1.34793300	1.09912700	-0.18794600
Ν	-2.67460600	-0.43871900	-0.00717500
Н	-2.45733600	0.55898000	-0.05229400
С	-4.03666800	-0.74111900	0.05334300
С	-4.92425300	0.39015700	0.03689800
С	-4.57290200	-2.01581500	0.12694400
С	-6.33388500	0.18120400	0.09756500
С	-5.97183800	-2.19902300	0.18586200
Н	-3.90826300	-2.86462600	0.13865200
С	-5.16911000	2.67336800	-0.05260100
С	-7.15322600	1.33602500	0.07816600

С	-6.84373500	-1.13871600	0.17264500
Н	-6.35455900	-3.21204700	0.24289600
С	-6.57798900	2.58035000	0.00351400
Н	-4.68795700	3.64622300	-0.11239100
Н	-8.23146000	1.22071300	0.12259700
Н	-7.91616900	-1.29364900	0.21829800
Н	-7.17998200	3.48110800	-0.01314700
Ν	-4.37216400	1.62730100	-0.03673800
С	6.29773500	2.56240200	0.92966000
Н	7.09538300	2.18654500	1.57411300
Н	6.45280900	3.63629000	0.79126500
Η	5.34888400	2.42246500	1.45118900
С	7.70572300	-0.94404800	0.99428500
Н	8.56630800	-1.61120300	0.88921000
Н	8.00704600	-0.10046400	1.61882900
Н	6.91788100	-1.48674800	1.52054600