ELECTRONIC SUPPORTING INFORMATION (ESI)

The Non-Innocent Nature of Graphene Oxide as Theranostic Platform for Biomedical Applications and its Reactivity towards Metal-Based Anticancer Drugs

Audrey Mokdad,^{a*} Konstantinos Dimos,^b Giorgio Zoppellaro,^{a*} Jiri Tucek,^a Jason A. Perman,^a Ondrej Malina,^a K. Kristoffer Andersson,^c Kasibhatta Kumara Ramanatha Datta,^a Jens Peter Froning^a and Radek Zboril^{a*}

Theoretical calculations (geometry optimization Fe-Pz₂Py)

Input File (Spartan 14) for the calculation of the geometry optimized structure of Fe-Pz₂Py (charge = +2, multiplicity = 5)

MEM TOTAL 2000 # MB [4 processes] Processing \$rem in C:/Program Files/Wavefunction/Spartan14v100/P4e//../auxdir/config/preferences. (Site specific preferences) ... THRESH 9 ... SCF CONVERGENCE 7 ... SMALL PROD XCMAT 9 ... BASIS LIN DEP THRESH 5 ... SCF_ALGORITHM DIIS_GDM ... MAXSCF 100 ... MAXDIIS 50 ... THRESHDIIS -1 (i.e. don't switch on delta-E) ... ONEEXE_SPAR TRUE ... GUI GUI SPARTAN ... TERSE_OUTPUT TRUE Processing \$rem in input file ... JOBTYPE OPT ... TIDY_SYM TRUE ... EXCHANGE M06 ... CORRELATION none (built-in) ... INCDFT FALSE (N/A in MetaGGA) ... IGRDTY 70000302 (70,302) M06* default ... PSEUDOPOTENTIAL LACVP ... IGRDTY 70000302 (70,302) ... MAXSCF 1000 ... UNRESTRICTED TRUE (setting default UHF) ... VARTHRESH 2 (default DFT) ... BASIS LACVP* ... GEOM_OPT_HESSIAN READ ... EXTERNAL_HESSIAN 1 ... GUI GUI_SPARTAN

... TERSE_OUTPUT TRUE

Coordinate (xyz) of the Fe-Pz₂Py complex from optimized geometry

		Coordinates (Angstroms)
A	TOM	Х Ү	Z
1	Η	0.000000 0.000000 4	.752645
2	С	0.000000 0.000000 3	.665240
3	Ν	0.000000 0.000000 0	.929633
4	С	-1.213099 0.001082 2	.982360
5	С	1.213099 -0.001082 2	.982360
6	С	1.155745 -0.001370 1	.596865
7	С	-1.155745 0.001370 1	.596865
8	Η	-2.154863 0.001366 3	.522046
9	Η	2.154863 -0.001366 3	.522046
10	Ν	-2.284786 0.002812 0	.763129
11	Ν	-2.102030 -0.002947 -0	.589849
12	С	-3.324671 0.001178 -1	.109418
13	С	-4.310481 0.009849 -0	.106597
14	С	-3.613793 0.010761 1	.073677
15	Η	-3.453156 -0.001888 -2	.186249
16	Η	-5.384785 0.015066 -0	.232088
17	Η	-3.961376 0.016654 2	.099078
18	Ν	2.284786 -0.002812 0	.763129
19	С	3.613793 -0.010761 1	.073677
20	С	4.310481 -0.009849 -0	.106597
21	С	3.324671 -0.001178 -1	.109418
22	Ν	2.102030 0.002947 -0	.589849

23	Н	3.961376	-0.016654	2.099078				
24	Н	5.384785	-0.015066	-0.232088				
25	Н	3.453156	0.001888	-2.186249				
26	Fe	0.00000	0.00000	-1.208249				
27	0	-0.013334	2.152433	-1.526782				
28	Н	0.759561	2.711368	-1.352350				
29	Н	-0.795144	2.698706	-1.351748				
30	0	0.00000	0.00000	-3.291293				
31	Н	0.007136	-0.789511	-3.854483				
32	Н	-0.007136	0.789511	-3.854483				
33	0	0.013334	-2.152433	-1.526782				
34	Н	0.795144	-2.698706	-1.351748				
35	Н	-0.759561	-2.711368	-1.352350				
Poin	t Group:	c2 Number	of degrees	of freedom:	48			
Energy = -1050.057740208 au								

Figure S1. The optimized structure of Fe-Pz₂Py with the relevant Fe-N/O distances, spin density isosurface and Mulliken atomic charges as calculated by DFT UM06/6-31G*/LanL2DZ.

Figure S2. Mossbauer spectra of Fe-Pz₂Py (powder) recorded at T = 300 K (a) and T = 5 K (b) validating the presence in the complex of only Fe(II) cation in high spin (S = 2) state.

Figure S3. FT-IR spectra of GO (a), Fe-Pz₂Py/GO (b) and Fe-Pz₂Py (c).

Figure S4. Raman spectra of GO (a), and Fe-Pz₂Py/GO (b)

Comparison of all DTA/TG%/DTG curves of GO, Fe-Pz₂Py and Fe-Pz₂Py/GO clearly confirms the formation of the hybrids system (Fe-Pz₂Py/GO). GO materials exhibit two exothermic peaks; one at around 160-210 °C and one at ~400 °C (Panel a), that are ascribed to their decomposition and combustion respectively. The hybrid material demonstrates additional exothermic peaks which are associated with the Fe-Pz₂Py content and its combustion (Panel c). All exothermic peaks are accompanied by corresponding weight losses which are better displayed by the DTG signals. Moreover, in the temperature region ~130-550 °C which includes all decomposing and combustion of organic/inorganic carbon-based content of the materials, Fe-Pz₂Py/GO losses 85% of its weight, and GO just 69%. This difference is associated with the Fe-Pz₂Py presence (Panel b). Thus, while combustion peaks of pristine GO and Fe-Pz₂Py are overlapping and the exact Fe-Pz₂Py content for Fe-Pz₂Py/GO. This amount of loaded Fe-Pz₂Py has been further validated by atomic absorption spectroscopy following analysis of the Fe cation (16.3±0.3 wt% of Fe-Pz₂Py in the hybrid). After drying the sample Fe-Pz₂Py/GO being kept in water for weeks no significant signal shifts or changes in the DTA/TG%/DTG relative intensity were observed, indicating a highly stable material, both as dry powder and in solution, even after prolonged storage.

Figure S6. The N1s core level X-ray photoemission spectra of sample Fe-Pz₂Py/GO.

Figure S7. The SEM and TEM micrographs of the drug loaded GO composite (Fe-Pz₂Py/GO).

Figure S8. The UV-Vis spectrum of Fe-Pz₂Py in water (0.03 mM) (b) and the calculated absorption envelope (a) by TDDFT-UEDF2/6-31G** in vacuum (excited states = 30, frozen cores = 28).

Figure S9. Steady-state optical absorption spectra of Fe-Pz₂Py in water in presence of increasing amounts of DNA showing the absorbance changes with the increase of DNA concentration.

The optical spectrum of the Fe-Pz₂Py complex (black line) displays transitions centered at ~ 238 nm, 243nm, 262nm, 300nm and between 350-400 nm. The 475 nm band likely arises from a charge transfer transition between the iron and the nitrogen-ligands of the Pz₂Py backbone.

Figure S10. Confocal microscopy images of the mouse fibroblast NIH 3T3 cells culture without (a) and with 50μ M (IC₅₀) of Fe-Pz₂Py (b). Cells were maintained at 37°C with 5% humidified CO₂ in an incubation chamber for 24 hours. Images were collected using an optical microscope (Olympus IX 70) with an objective of 40×.

NOTE:

It is interesting to report also that when the cell line NIH 3T3 (mouse fibroblasts) was used in the cytotoxicity screening for Fe-Pz₂Py, the calculated IC₅₀ decreased considerably, down to 50 μ M, showing that the L929 cells are less affected to the drug exposure. Kamatchi et al. demonstrated that the IC₅₀ for NIH 3T3 cells equals to 177 μ M for cisplatin and 109 μ M to 248 μ M for different types or ruthenium complexes containing bidentate carboxylates ligands, hence Fe-Pz₂Py is more toxic than cis-Pt and Rubased drugs against the NIH 3T3 cell's line.

Reference

T. S. Kamatchi, N. Chitrapriya, H. Lee, C. F. Fronczek, F. R. Fronczek, K. Natarajan, *Dalton Trans.*, 2012, **41**, 2066-2077.

Figure S11. Fluorescence quenching spectra of Fe-Pz₂Py at different concentrations of base pairs at 298 K; Fe-Pz₂Py = 0.03 mM, Base pairs from 0.015 mM to 0.15 mM (E_{ex} = 295 nm) with (a) Adenine, (b) Thymine, (c) Guanine and (d) Cytosine. The arrows in (b) and (d) indicate the fluorescence quenching process.

Figure S12. Stern-Volmer plot of the binding of Fe-Pz₂Py to DNA (a), thymine (b) and cytosine (c) recorded at room temperature. Plot of $\log[(F_0-F)/F]$ *vs* log [Substrate] for the binding of Fe-Pz₂Py to DNA (d), thymine (e) and cytosine (f). The Table in the bottom shows a summary of the constant *K*q, *Ksv*, *K* and *n* for DNA, thymine and cytosine.

	Kq (M ⁻¹ s ⁻¹)	K _{sv} (M⁻¹)	K (M⁻¹)	n
DNA	2.0 x 10 ¹¹	2.0x 10 ³	7.9 ± 1.6	1.8
Thymine	7.2 x 10 ¹²	3.6 x 10 ³	5.0 ± 1.1	1.2
Cytosine	2.4 x 10 ¹²	1.2 x 10 ³	0.04 ± 1	0.05

Note: Using the following equation, the formation of complex between $Fe-Pz_2Py$ and DNA, thymine or cytosine can be confirmed from the values of quenching rate constant K_q :

$$K_q = K_{sv} / \tau_0$$

where τ_0 is the average lifetime of the molecule without the quencher. For various quenchers, the maximum scatter collision quenching constant, K_q , with biopolymer is 2 x 10¹⁰ M⁻¹s⁻¹. If we assume the lifetime (τ_0) (10⁻¹² s⁻¹) of the calf thymus, which is equal to 10 ps, is similar to the salmon sperm DNA, then we can extract K_q .

Theoretical calculations (UV-Vis of Fe-Pz₂Py)

Input File (Spartan 14) for the calculation of the UV-Vis spectrum of $\text{Fe-Pz}_2\text{Py}$ (charge = +2, multiplicity = 5) as shown in Figure S7.

Job type: Single point. Excited States: 30 Method: UEDF2(FC) Basis set: 6-31G** Number of shells: 128 Number of basis functions: 389 Charge : +2Multiplicity: 5 Processing \$rem in C:/Program Files/Wavefunction/Spartan14v100/P4e//../auxdir/config/preferences. (Site specific preferences) ... THRESH 9 ... SCF_CONVERGENCE 7 ... SMALL_PROD_XCMAT 9 ... BASIS_LIN_DEP_THRESH 5 ... SCF_ALGORITHM DIIS_GDM ... MAXSCF 100 ... MAXDIIS 50 ... THRESHDIIS -1 (i.e. don't switch on delta-E) ... ONEEXE SPAR TRUE ... GUI GUI SPARTAN ... TERSE OUTPUT TRUE Processing \$rem in input file ... EXCHANGE EDF2 ... CORRELATION None (default) ... BASIS 6-31G** ... CIS_N_ROOTS 6 ... CIS_STATE_DERIV 1 ... IGRDTY 70000302 (70,302) ... MAXSCF 1000 ... CIS_N_ROOTS 30 ... N_FROZEN_CORE 28 ... UNRESTRICTED TRUE (setting default UHF) ... VARTHRESH 2 (default DFT) ... INCDFT TRUE (default DFT) ... GUI GUI SPARTAN ... TERSE_OUTPUT TRUE

TDDFT/TDA Excitation Energies

Excited state 1: excitation energy (eV) = 0.0391Total energy for state 1: -2190.442481939248 <S**2> : 6.0110 Trans. Mom.: 0.1355 X 0.0013 Y 0.0000 Z Strength : 0.0000 D(52) -> S(1) amplitude = 0.8220 beta D(52) -> S(4) amplitude = 0.5426 beta Excited state 2: excitation energy (eV) = 0.1262Total energy for state 2: -2190.439281151341 <S**2> : 6.0072 Trans. Mom.: 0.0000 X 0.0000 Y 0.0035 Z Strength : 0.0000 D(52) -> S(3) amplitude = 0.9883 beta Excited state 3: excitation energy (eV) = 0.9847Total energy for state 3: -2190.407733138254 <S**2> : 6.0061 Trans. Mom.: -0.0024 X 0.0104 Y 0.0000 Z Strength : 0.0000 D(52) -> V(1) amplitude = 0.9631 beta D(52) -> V(4) amplitude = 0.2099 beta Excited state 4: excitation energy (eV) = 1.4444Total energy for state 4: -2190.390838883862 <S**2> : 6.0077 Trans. Mom.: 0.0021 X 0.0059 Y 0.0000 Z Strength : 0.0000 D(52) -> V(1) amplitude = -0.2189 beta D(52) -> V(2) amplitude = -0.5845 beta D(52) -> V(4) amplitude = 0.7228 beta D(52) -> V(7) amplitude = 0.2655 beta Excited state 5: excitation energy (eV) = 2.6563Total energy for state 5: -2190.346301921167 <S**2> : 7.1826 Trans. Mom.: 0.0000 X 0.0000 Y 0.4812 Z Strength : 0.0151 D(52) -> S(2) amplitude = 0.9733 beta Excited state 6: excitation energy (eV) = 2.8418Total energy for state 6: -2190.339484954966 <S**2> : 7.0280 Trans. Mom.: -0.3322 X -0.0006 Y 0.0000 Z Strength : 0.0077 D(52) - S(1) amplitude = -0.5546 beta D(52) -> S(4) amplitude = 0.8213 beta Excited state 7: excitation energy (eV) = 3.4719Total energy for state 7: -2190.316328029332 <S**2> : 7.7851 Trans. Mom.: 0.0000 X 0.0000 Y -0.1419 Z Strength : 0.0017 S(4) --> V(2) amplitude = -0.6091 alpha D(51) -> S(1) amplitude = 0.6531 beta D(51) -> S(4) amplitude = -0.3240 beta

Excited state 8: excitation energy (eV) = 3.5206

Total energy for state 8: -2190.314538389789 <S**2> : 7.9817 Trans. Mom.: -0.1036 X -0.0001 Y 0.0000 Z Strength : 0.0009 S(4) --> V(1) amplitude = 0.7053 alpha D(51) --> S(2) amplitude = 0.6670 beta

- Excited state 9: excitation energy (eV) = 3.9212 Total energy for state 9: -2190.299818806492 <S**2> : 6.2670 Trans. Mom.: 0.0005 X -0.0689 Y 0.0000 Z Strength : 0.0005 S(3) --> V(1) amplitude = 0.9925 alpha
- Excited state 10: excitation energy (eV) = 4.0335 Total energy for state 10: -2190.295692020174 <S**2> : 7.7892 Trans. Mom.: 0.0000 X 0.0000 Y -0.0793 Z Strength : 0.0006 S(1) --> V(2) amplitude = 0.3795 alpha S(2) --> V(1) amplitude = -0.4473 alpha D(49) --> S(1) amplitude = 0.3934 beta

D(49) -> S(4) amplitude = -0.1720 beta D(50) -> S(2) amplitude = 0.4524 beta

- D(52) -> V(3) amplitude = -0.2941 beta
- Excited state 11: excitation energy (eV) = 4.0457Total energy for state 11: -2190.295241064957 <S**2> : 7.7855 Trans. Mom.: 0.0372 X - 0.0030 Y - 0.0000 ZStrength : 0.0001 D(52) -> V(2) amplitude = 0.1641 alpha S(1) --> V(1) amplitude = -0.4798 alpha S(1) -> V(3) amplitude = 0.1624 alpha S(2) -> V(2) amplitude = 0.3586 alpha D(48) -> S(1) amplitude = 0.1730 beta D(49) -> S(2) amplitude = 0.3885 beta D(49) -> V(3) amplitude = -0.1603 beta D(50) -> S(1) amplitude = 0.5170 beta D(50) -> S(4) amplitude = -0.1833 beta Excited state 12: excitation energy (eV) = 4.0517Total energy for state 12: -2190.295021136484 <S**2> : 7.0286 Trans. Mom.: -0.0009 X -0.0898 Y 0.0000 Z Strength : 0.0008
- D(52) -> V(2) amplitude = 0.7963 beta
- D(52) -> V(4) amplitude = 0.5883 beta
- Excited state 13: excitation energy (eV) = 4.0878Total energy for state 13: -2190.293695368173 $<S^{**2>}$: 6.3860Trans. Mom.: $0.0000 \times 0.0000 \times -0.3844 Z$ Strength : 0.0148S(4) --> V(2) amplitude = 0.3528 alpha D(51) --> S(1) amplitude = 0.6725 beta D(51) --> S(4) amplitude = 0.5922 beta
- Excited state 14: excitation energy (eV) = 4.1230 Total energy for state 14: -2190.292400956618 <S**2> : 6.0463 Trans. Mom.: 0.0781 X 0.0056 Y 0.0000 Z

Strength : 0.0006 D(51) -> S(3) amplitude = 0.9925 beta Excited state 15: excitation energy (eV) = 4.1639Total energy for state 15: -2190.290898737517 <S**2> : 7.1130 Trans. Mom.: 0.0000 X 0.0000 Y 0.0623 Z Strength : 0.0004 S(2) --> V(1) amplitude = -0.1513 alpha D(52) -> V(3) amplitude = 0.9317 beta Excited state 16: excitation energy (eV) = 4.2679Total energy for state 16: -2190.287075471239 <S**2> : 6.0446 Trans. Mom.: 1.4522 X 0.0022 Y 0.0000 Z Strength : 0.2205 S(4) -> V(1) amplitude = -0.6557 alpha D(51) -> S(2) amplitude = 0.6731 beta Excited state 17: excitation energy (eV) = 4.3489Total energy for state 17: -2190.284101578425 <S**2> : 6.2351 Trans. Mom.: 0.0000 X 0.0000 Y -0.0030 Z Strength : 0.0000 S(3) -> V(2) amplitude = 0.9946 alpha Excited state 18: excitation energy (eV) = 4.4406Total energy for state 18: -2190.280728831889 <S**2> : 7.6551 Trans. Mom.: 0.0000 X 0.0000 Y 0.0213 Z Strength : 0.0000 D(49) -> V(1) amplitude = 0.1803 alpha D(50) -> V(1) amplitude = -0.1554 alpha D(52) -> V(1) amplitude = 0.4713 alpha S(1) -> V(2) amplitude = -0.1734 alpha S(2) --> V(1) amplitude = -0.4502 alpha D(47) -> S(2) amplitude = -0.2081 beta D(48) -> S(2) amplitude = -0.3051 beta D(49) - S(1) amplitude = -0.3271 beta D(50) -> S(2) amplitude = 0.3286 beta D(51) -> S(4) amplitude = -0.1840 beta Excited state 19: excitation energy (eV) = 4.5145Total energy for state 19: -2190.278014781491 <S**2> : 7.0745 Trans. Mom.: 0.1570 X 0.0002 Y 0.0000 ZStrength : 0.0027 D(50) -> V(2) amplitude = 0.1841 alpha S(1) -> V(1) amplitude = 0.2508 alpha S(4) -> V(3) amplitude = 0.2337 alpha D(48) -> S(1) amplitude = -0.3506 beta D(49) - S(2) amplitude = -0.2277 beta D(50) -> S(1) amplitude = 0.6822 beta D(51) -> V(3) amplitude = 0.2072 beta Excited state 20: excitation energy (eV) = 4.7168Total energy for state 20: -2190.270581125494 <S**2> : 6.0450 Trans. Mom.: 0.0000 X 0.0000 Y -0.0005 Z Strength : 0.0000

D(51) -> V(1) amplitude = -0.6430 beta

Excited state 21: excitation energy (eV) = 4.7272Total energy for state 21: -2190.270198399535 $<S^{**}2>$: 6.0453 Trans. Mom.: 0.0000 X 0.0000 Y 0.0266 Z Strength : 0.0001 D(50) --> S(3) amplitude = 0.6373 beta D(51) --> V(1) amplitude = 0.7637 beta

Excited state 22: excitation energy (eV) = 4.7402Total energy for state 22: -2190.269721830728 $<S^{**}2> : 6.9799$ Trans. Mom.: $-0.0102 \times -0.0018 \times 0.0000 Z$ Strength : 0.0000D(50) --> V(2) amplitude = -0.1784 alpha S(2) --> V(2) amplitude = -0.4565 alpha S(4) --> V(3) amplitude = -0.2975 alpha D(48) --> S(1) amplitude = -0.1682 beta D(49) --> S(2) amplitude = -0.1682 beta D(50) --> S(4) amplitude = -0.2815 beta D(51) --> V(3) amplitude = -0.2815 beta

- Excited state 23: excitation energy (eV) = 4.7693 Total energy for state 23: -2190.268649819271 <S**2> : 7.0363 Trans. Mom.: 0.0000 X 0.0000 Y -0.0447 Z Strength : 0.0002 D(52) --> V(5) amplitude = 0.9709 beta
- Excited state 24: excitation energy (eV) = 4.7831Total energy for state 24: -2190.268143813801 $<S^{**2}>$: 6.1772 Trans. Mom.: 0.0032 X 0.1695 Y 0.0000 Z Strength : 0.0034 D(51) --> V(1) amplitude = 0.9911 alpha
- Excited state 25: excitation energy (eV) = 4.8565Total energy for state 25: -2190.265447970550 <S**2> : 6.5812 Trans. Mom.: 0.0000 X 0.0000 Y 0.0645 Z Strength : 0.0005 D(49) -> V(1) amplitude = 0.1518 alpha D(50) -> V(1) amplitude = 0.2585 alpha D(52) -> V(1) amplitude = 0.4164 alpha S(1) -> V(2) amplitude = 0.2857 alpha S(2) -> V(1) amplitude = 0.5313 alpha S(4) -> V(2) amplitude = 0.1630 alpha D(48) -> S(2) amplitude = 0.2358 beta D(50) -> S(2) amplitude = 0.3401 beta D(51) -> S(4) amplitude = -0.2163 beta D(52) -> V(5) amplitude = 0.1563 beta Excited state 26: excitation energy (eV) = 4.8664Total energy for state 26: -2190.265083234634 <S**2> : 6.9060 Trans. Mom.: 0.0000 X 0.0000 Y -0.0542 Z Strength : 0.0004 D(50) -> V(1) amplitude = -0.3212 alpha D(52) -> V(1) amplitude = -0.3518 alpha

S(4) --> V(6) amplitude = -0.1500 alpha D(47) --> S(2) amplitude = 0.3149 beta D(49) --> S(1) amplitude = -0.2279 beta D(50) --> S(2) amplitude = 0.5930 beta

- Excited state 27: excitation energy (eV) = 4.9245Total energy for state 27: -2190.262949246336 $<S^{**}2>$: 7.1325 Trans. Mom.: -0.2780 X 0.0001 Y 0.0000 Z Strength : 0.0093 S(1) --> V(1) amplitude = -0.2203 alpha S(2) --> V(2) amplitude = -0.2649 alpha D(50) --> S(4) amplitude = 0.2323 beta D(52) --> V(6) amplitude = 0.8696 beta
- Excited state 28: excitation energy (eV) = 4.9592 Total energy for state 28: -2190.261672027625 <S**2> : 6.0473 Trans. Mom.: 0.0285 X 0.0339 Y 0.0000 Z Strength : 0.0002 D(49) --> S(3) amplitude = 0.9805 beta
- Excited state 29: excitation energy (eV) = 4.9651Total energy for state 29: -2190.261457242253 $<S^{**2>}$: 7.0578 Trans. Mom.: 0.0000 X 0.0000 Y -0.0568 Z Strength : 0.0004 D(52) --> V(1) amplitude = 0.4462 alpha S(2) --> V(1) amplitude = 0.1816 alpha S(4) --> V(2) amplitude = 0.1838 alpha S(4) --> V(6) amplitude = -0.1596 alpha D(47) --> S(2) amplitude = 0.1853 beta D(48) --> S(2) amplitude = -0.3610 beta D(49) --> S(1) amplitude = 0.5864 beta
- Excited state 30: excitation energy (eV) = 4.9857Total energy for state 30: -2190.260697917812 $<S^{**2>}$: 6.6327 Trans. Mom.: 0.0000 X 0.0000 Y 1.0615 Z Strength : 0.1376 D(49) --> V(1) amplitude = 0.2710 alpha D(50) --> V(1) amplitude = -0.1608 alpha S(1) --> V(2) amplitude = -0.2231 alpha S(2) --> V(1) amplitude = 0.2421 alpha S(4) --> V(2) amplitude = -0.3683 alpha D(47) --> S(2) amplitude = -0.365 beta D(49) --> S(1) amplitude = 0.4039 beta D(49) --> S(4) amplitude = 0.2576 beta D(50) --> S(4) amplitude = 0.2642 beta