Supporting Information

Evaluation of Multilayer Coated Magnetic Nanoparticles as Biocompatible

Curcumin delivery Platforms for Breast Cancer Treatment

Table S1. Zeta potentials, particle size distributions and average sizes of different MNPs.

Name	Zeta potential(mV)	Average size (nm)
Fe ₃ O ₄ MNPs	+ 3.2	82±3.1
Fe@PEI	+19.1	105±3.4
Fe@HAP-PEI	+4.9	153±6.5
Fe@PEI-CD	-4.3	205±7.8
Fe@HAP-PEI-CD	-11.6	260±8.9

Fig. S1: FTIR analysis of different MNPs

Figure S2. Representative photograph of dispersed solutions of 0.5mg bare MNP, unloaded and CUR- loaded different MNPs in 1mL ethanol: 1) Fe₃O₄ MNP; 2) Fe@PEI; 3) Fe@PEI-CD; 4) Fe@HAP-PEI-CD; 5) Fe@PEI-CD-CUR; 6) Fe@HAP-PEI-CD-CUR.

CUR standard solution for loading estimation:

Standard CUR solutions in DMSO (1–7 μ g/mL) was prepared and measured on UV-vis spectrophotometer at 450 nm. The absorbance of the solutions has been tabulated in Table S2. A standard plot was made from absorbance values (Figure S2).

Calculation of CUR loaded quantity:

1 mg of both Fe@HAP-PEI-CD and Fe@PEI-CD was separately dissolved in 100 mL DMSO (Solution A and B, respectively). CUR was extracted in DMSO according to the method in manuscript and absorbency was measured at 438 nm using UV-vis spectrophotometer, i.e., 0.2355 for solution A and 0.2150 for solution B.

CUR in Solution A and B = (Absorbance value - intercept of standard plot) / (slope of standard plot) / (slope of standard plot)

CUR in Solution A = $(0.2355 - 0.0077) / (0.1469) = 1.551 \,\mu g/mL$

CUR in Solution B = $(0.2150 - 0.0077) / (0.1469) = 1.411 \,\mu\text{g/mL}$

CUR containing in 1 mg Fe@HAP-PEI-CD = $1.551 \times 100 = 155.1 \mu g$

CUR containing in 1 mg Fe@PEI-CD = $1.411 \times 100 = 141.1 \mu g$

CUR Standard solutions		
µg/mL	UV-vis absorbance	
7.1	1.03	
5.3	0.774	
4.2	0.613	
2.1	0.303	
1.1	0.149	

Table S2. Absorbance values for $1-7 \mu g/mL$ CUR containing DMSO solutions

Figure S3. Standard plot of pure CUR in DMSO solution.

Figure S4: Standard calibration curve of CUR for estimation of CUR release percentage

Figure S5: Uptake quantitative analysis of free CUR and CUR loaded MNP nanocomposites by

flow cytometry

