Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Hydrogenation of Allyl Alcohols Catalyzed by Aqueous Palladium and Platinum Nanoparticles

Krystel Di Pietrantonio, Francesca Coccia, Lucia Tonucci, Nicola d'Alessandro and Mario Bressan

Fig. S1: UV-vis spectra of reaction mixture during Pt CaLig NPs synthesis. Blu: starting mixture; fuchsia: after 2 h at 80°C.

Fig. S2: UV-vis spectra of reaction mixture during Pd CaLig NPs synthesis. Blu: starting mixture; red: after 3 h at 80°C.

Fig. S6: ¹H NMR spectrum of PtCaLig NPs in water solution.

Fig. S7: FT-IR spectra of NaRO Lignin.

Fig. S8: FT-IR spectra of NaROLig Pd NPs.

Fig. S9: FT-IR spectra of NaROLig Pt NPs.

Fig. S10: TEM of AmLig Pd NPs.

Fig. S11: TEM of AmLig Pt NPs.

Fig. S12: TEM of CaLig Pd NPs.

Fig. S13: TEM of CaLig Pt NPs.

Fig. S14: TEM of NaLig Pd NPs.

Fig. S15: TEM of NaLig Pt NPs.

Fig. S16: TEM of NaROLig Pd NPs.

Fig. S17: TEM of NaROLig Pt NPs.

Fig. S18: TEM of KrLig Pd NPs.

Fig. S19: TEM of KrLig Pt NPs.

Fig. S20: XRD of Pt CaLig NPs.

Fig. S21: XRD of Pd CaROLig NPs.

Fig. S22: ¹H NMR spectra of water mixture reaction of allyl alcohol with Pt NaLig NPs at 0h (left) and 24h (right).

Fig. S23: ¹H NMR spectra of water mixture reaction of 2-buten-1-ol with Pt NaLig NPs at 0h (left) and 24h (right).

Fig. S24: Headspace GC chromatogram of 2-buten-1-ol in presence of Pt CaROLig NPs and H₂.

Fig. S25: MS spectra of signals in chromatogram at Fig. S24. RT = 1.62 (above) and RT = 1.71 (below) comparing with butane and 2-butene spectra of MS database.

Fig. S26: ¹H NMR spectra of water mixture reaction of 3-methyl-2-buten-1-ol with Pt NaLig NPs at 0h (left) and 24h (right).

Fig. S27: Headspace GC chromatogram of 3-methyl-2-buten-1-ol in presence of Pt CaROLig NPs and H₂.

Fig. S28: MS spectra of signals in chromatogram at Fig. S27. RT = 1.71 (above) and RT = 1.91 (below) comparing with 2-methylbutane and 2-methylbutene spectra of MS database.

Fig. S29: ¹H NMR spectra of water mixture reaction of *trans*-2-pentenol with Pt AmLig NPs at 0h (left) and 24h (right).

Fig. S30: ¹H NMR spectra of water mixture reaction of *cis*-2-pentenol with Pt CaLig NPs at 0h (left) and 24h (right).

Fig. S31: ¹H NMR spectra of water mixture reaction of 2-propen-1-ol with Pd CaLig NPs at 0h (left) and 24h (right).

Fig. S32: ¹H NMR spectra of water mixture reaction of 2-buten-1-ol with Pd NaLig NPs at 0h (left) and 24h

(right).

Fig. S33: ¹H NMR spectra of water mixture reaction of 3-methyl-2-buten-1-ol with Pd NaLig NPs at 0h (left) and 24h (right).

Fig. S34: ¹H NMR spectra of water mixture reaction of *trans*-2-pentenol with Pd NaLig NPs at 0h (left) and 24h (right).

Fig. S35: ¹H NMR spectra of water mixture reaction of *cis*-2-pentenol with Pd NaROLig NPs at 0h (left) and 24h (right).