Electronic Supplementary Information (ESI)

EDC/NHS activation mechanism of polymethacrylic acid: anhydride versus NHS-ester

Qin Yan, Hong-Ning Zheng, Chuan Jiang, Kun Li, Shou-Jun Xiao*

State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, Jiangsu, China

1 Table S1 Infrared peak assignments in the carbonyl stretching region from 1500 to 2000 cm⁻¹.

Table S1. Infrared peak assignments in the carbonyl stretching region from 1500 to 2000 cm ⁻¹ .					
~2105	v (azide)	azide stretch			
~1738	v _{as} (imidyl C=O)	NHS-ester imidyl C=O antisymmetric stretch			
~1780	v _s (imidyl C=O)	NHS-ester imidyl C=O symmetric stretch			
~1810	v (ester C=O)	NHS-ester carbonyl stretch			
~1760	v _{as} (anhydride C=O)	anhydride C=O antisymmetric stretch			
~1802	v _s (anhydride C=O)	anhydride C=O symmetric stretch			
~1714	v (acid C=O)	carboxylic acid C=O stretch			
~1570	v (COO ⁻)	carboxylate (COO ⁻) stretch			
~1650	v (amide C=O)	amide I C=O stretch			
~1529	v (amide N-H)	amide II N-H bend*			
*For the polymer blend of PMAA/PNIPAM, amide II is at 1535 cm ⁻¹ .					

2 Table S2 Molar percentage of anhydride, NHS-ester, and acid residue in **0.5G**, **1.5G**, **2.5G** calculated according to equations 1~3 in the main body.

5G, 1.5G, 2.5G as a carboxylic acid as the unit.							
	β _{anhydride}	$\beta_{\rm NHS-ester}$	β_{acid}				
0.5 G	83	10	7				
1.5 G	52	28	20				
2.5 G	17	46	37				

3 Table S3 Combined molar percentages of anhydride, NHS-ester, acid residue, and amide in **0.5G**, **1.0G**, **1.5G**, **2.0G**, **2.5G**, and **3.0G** respectively according to equations 1~4 in the main body.

Table S2. Combined molar percentages of anhydride, NHS-ester, acid residue, and amide in 0.5G , 1.0G , 1.5G , 2.0G , 2.5G , and 3.0G respectively as a carboxylic acid as the unit ($\beta_{anhydride}$, $\beta_{NHS-ester}$, β_{acid} in Table S2 correspond to Table S1 respectively).							
	α _{anhydride} (%)	$\alpha_{\rm NHS-ester}$ (%)	a _{acid} (%)	α _{amide}			
0.5G	83 (= $\beta_{anhydride}$)	$10 (=\beta_{\text{NHS-ester}})$	7 (= β_{acid})	0			
1.0G	0	0	68	32			
1.5G	$35 (=0.68\beta_{anhydride})$	$19 (=0.68 \beta_{\text{NHS-ester}})$	$14 (= 0.68 \beta_{acid})$	32			
2.0G	0	0	52	48			
2.5G	9 (=0.52 $\beta_{anhydride}$)	24 (= $0.52\beta_{\text{NHS-ester}}$)	19 (=0.52β _{acid})	48			
3.0G	0	0	38	62			

4 Scheme S1 Schematic drawing of possible molecular structures after EDC/NHS activation of PMAA/PNIPAM blends by ignoring the acid residues.

Scheme S1. Schematic drawing of possible molecular structures after EDC/NHS activation of PMAA/PNIPAM blends by ignoring the acid residues. The structures in parentheses are subunits while in brackets a unit for the polymer blend. Curved lines represent connections, but not only in this order; subunits with subscripts in alphabets (i, j, k, l) are variable in integers, meaning the subunit can be lonely or next to each other themselves; while subunits in parentheses without subscript labeling represent they are only lonely and cannot be next to each other themselves. A represents the product structure when PMAA is less than 30%, while **B** the product structure when PMAA is between 30% and 70%.

5 Fig. **S1** The different EDC/NHS activation performance of glutaric acid, 2,2-dimethyl glutaric acid, succinic acid, and 2,2-dimethyl succinic acid.

Fig. S1 (a) 1. glutaric acid, 2. 2,2-dimethyl glutaric acid, 3. succinic acid, 4. 2,2-dimethylsuccinic acid; (b) at 0 min after addition of NHS and EDC to the corresponding dicarboxylic acids in 0.1 mol/L MES buffer; (c) 30 min later after addition of NHS and EDC to the corresponding dicarboxylic acids in 0.1 mol/L MES buffer, 1. GA-NHS precipitate, 2. DMGA-NHS precipitate, 3. clear solution of succinic acid, NHS, and EDC, 4. clear solution of 2,2-dimethylsucinic acid, NHS, and EDC.

6 Fig. S2 Infrared spectra of glutaric acid di-succinimidyl ester (GA-NHS) and 2,2-dimethyl glutaric acid di-succinimidyl ester (DMGA-NHS).

Fig. S2 Infrared spectra of (a) GA-NHS and (b) DMGA-NHS, where the associated triplex bands of NHS-ester at 1736, 1780, and 1814 cm⁻¹ are obvious for both GA-NHS and DMGA-NHS.

7 Fig. S3 Mass spectrogram of DMGA-NHS

Fig. S3 ESI (LCQ Fleet) mass spectrogram of DMGA-NHS in the positive-ion mode: $(M + Na)^+$ at m/z of 377.17 (354+23).

8 Fig. S4 ¹H-NMR Spectra of GA-NHS

Fig. S4 ¹H-NMR Spectra of GA-NHS. It is the same as reported in reference 1.

9 Fig. S5 ¹H-NMR Spectra of DMGA-NHS.

10 Figure S6 Precipitation kinetics measurement of EDC/NHS activation of PMAA with the optical density at 600 nm by UV-1800 (Shimadzu) equipped with S1700.

Figure S6 Precipitation rate measurement of EDC/NHS activation of PMAA (0.015 mol/L EDC, 0.015 mol/L NHS, 0.01 mol/L PMAA monomer in 0.1 mol/L MES buffer) with the optical density at 600 nm.

11 Figure S7 Precipitation kinetics measurement of EDC/NHS activation of PAA with the optical density at 600 nm.

Figure S7 Precipitation rate measurement of EDC/NHS activation of PAA (0.015 mol/L EDC, 0.015 mol/L NHS, 0.01 mol/L PAA monomer in 0.1 mol/L MES buffer) with the optical density at 600 nm.

References

(1) The ¹H-NMR spectrum and MS spectrogram of GA-NHS are in ESI of this reference: T. A. van den Berg, B. L. Feringa, G. Roelfes. *Chem. Commun*, 2007 (2): 180-182.