Supporting Information for

Facile Synthesis of Oleyamine-Capped Silver Nanowire and Its Application for Transparent Conductive Electrode^{**}

Jun Zhu,^a*Xiufang Xu,^b Jinglei Liu,^c Yiqun Zheng,^b and Shifeng Hou^{a, c}

^aResearch Institute of Bio-nanotechnology, Jining Medical University, Jining, Shandong
272000, P. R. China
^bLeadernano Tech L.L.C., Jining, Shandong 272000, P. R. China
^cNational Engineering and Technology Research Center for Colloidal Materials, Shandong
University, Jinan, Shandong 250100, P. R. China

*Corresponding Author: Prof. J. Zhu, E-mail: jnzhuj@163.com

Figure S1. XRD pattern of Ag nanowires.

Figure S2. EDS pattern of Ag nanowires. Three elements, Ag, Br, and C, were observed in the spectrum and their mass percentage was 92.4%, 1.91%, and 5.70%, respectively. The presence of Br and C should be attributed to the residual Br⁻ on Ag nanowires surface and the use of conductive carbon tape during the measurement, respectively.

Figure S3. XRD pattern of an aliquot taken out from the reaction system at t = 1 h.

Figure S4. Schematic illustration showing the reactions and related mechanism leading to the formation of silver nanowire (NC: nanocube; NW: nanowire).

Figure S5. Histograms of nanowire diameter distribution for samples prepared under the experimental condition described in (A) Figure 1; (B) Figure 3C; (C) Figure 3D, respectively.

Table S1. Diameter of nanowires and corresponding standard deviations for samples

 obtained by repeating the standard procedure for three times.

	Diameter (nm)	Standard deviation (%)
1	33.8	7.7
2	35.1	7.3
3	34.3	7.6