ZrO_2 - β -cyclodextrin catalyzed synthesis of 2,4,5-trisubstituted imidazoles and 1,2-disubstituted benzimidazoles under solvent free conditions and evaluation of their antibacterial study

Yarabhally R.Girish,^a Kothanahally S. Sharath Kumar,^a Kuntebommanahalli N. Thimmaiah,^b Kanchugarakoppal S. Rangappa,^{a*} and Sheena Shashikanth,^{a*}

^aDepartment of Studies in Chemistry, Manasagangotri, University of Mysore, Mysore-570006.

^bDepartment of Chemistry, Northwest Mississippi Community College/University of Mississippi, DeSoto Center, Southaven, Mississippi-38671, USA.

*Corresponding author.

Tel. No.: +91-821-2419668 E-mail: <u>shashis1956@gmail.com</u> **Contents:**

1	General information	S1-S2
2	SEM and (b) TEM of recovered ZrO ₂ -supported -β-cyclodextrin	S 3
	nanoparticles.	
3	Characterization data of isolated 2,4,5-trisubstituted imidazole molecules 3(a-n) and 1,2-disubstituted benzimidazoles 5(a-k):	S3-S12
4	¹ H and ¹³ C NMR Spectra of imidazoles 3(a-n) and 1,2-disubstituted	S13-S33
	benzimidazoles 5(a-k). Selected compounds HPLC report.	

1. Experimental Section

General Methods

Zirconium oxychloride (ZrOCl₂.8H₂O, >99.0%), ammonia (NH₃.H₂O, 25%) was purchased from S.D. FINE-CHEM LTD, India. β -cyclodextrin was purchased from Sigma-Aldrich India, deionized water was used for all workup procedures. Melting points were measured on secor INDIA apparatus and are uncorrected. ¹H NMR and ¹³C NMR were recorded on VNMRS-400

(Agilent Technologies) NMR spectra in CDCl₃. Tetramethylsilane (TMS; $\delta = 0.00$ ppm) served as internal standards for ¹H NMR. The corresponding residual non-deuterated solvent signal (CDCl3: $\delta = 77.00$ ppm) was used as internal standards for 13C NMR. Performed Column chromatography on silica gel 60-120 mesh (Merck). Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Mass spectra were measured with Micromass Q-Tof (HRESI-MS). DMF was dried over CaH₂ for 2 h and filtered. The catalyst was characterized by ATR-Fourier transform infrared (ATR-IR) were recorded using a Thermo Nicolet FTIR spectrometer (Model 5700, Madison, WI) fitted with a single bounce attenuated total reflectance (ATR) accessory with a ZnSe crystal of range 400-4000cm-1. X-ray powder diffraction (PXRD) was carried out on a XRD 7000, Shimandzu diffractometer with CuKa radiation. Scanning electron microscopy (SEM) images were obtained using a JEOL JXA-8530F microscope. Transmission electron microscopy (TEM) images were performed on PHILIPS CM200 electron microscopes at an acceleration voltage of 20-200kv. TGA thermograms of the nanoparticles were obtained under nitrogen on a Perkin-Elmer TGA 7 analyzer at a heating rate of 20°C min-1.

Approximately (20 ml) of sterile molten nutrient agar media was aseptically poured into petriplates and allowed to solidify. Around 0.1 ml of the inoculums was seeded on the plates and spread using a sterile spreader. 0.2 mg of the derivatives was dissolved in 1000µl of DMSO/MeOH (1-14, in DMSO and 15-25 in MeOH). Then 25-50 µl of that suspension with final concentration 0.2 mg/ml per disc were loaded on paper disc and then placed aspectically on the surface of inoculated plates. The plates were incubated overnight for 24 hours at 37 °C. Streptomycin (10 µg / disc) and MeOH (50 µl) were used as positive control. The diameter of

inhibition zone was measured in milimeter (mm) scale and was recorded. The mean values of the diameter of the inhibition zone of the triplicates were taken as the final value.

- 2. Fig. 1 (a) SEM and (b) TEM of recovered ZrO_2 -supported - β -cyclodextrin nanoparticles.
- 3. Characterization data of isolated triazole molecules 3(a-n) and 5(a-k):

Entry	Product	NMR data
1		2,4,5-Triphenyl-1 <i>H</i> -imidazole (3a): White solid; mp: 270-
		276°C (lit. ^[57] 269 - 275 °C); FT-IR (KBr, cm- ¹): 3442, 1630,
	Ph ^r N, <u></u> H	1582; ¹ H NMR (DMSO-d6, 400MHz): δ 12.61 (s, 1H), 7.37-
		8.13 (m, 15H); ¹³ C NMR (DMSO-d6, 100MHz): δ 143.96,
	3a	130.76, 127.58, 126.49, 125.39, 123.73; HRMS (ESI) m/z
		Calculated for $C_{21}H_{16}N_2$ (M+1) + 297.1313, Found 297.1320

		Calculated for $C_{21}H_{15}N_2Cl (M+1)^+ 331.0924$, $(M+3)^+ 333.0824$,
		Found 331.0620 (M+1) ⁺ , 333.0874 (M+3) ⁺
		2-(3-Nitrophenyl)-4,5-diphenyl-1 <i>H</i> -imidazole (3i): Yellow
	$ \begin{array}{c} Ph \\ Ph \\ N \\ Ph \\ N \\ H \\ 3i \end{array} $	solid: mp: 268-270 °C (lit. ^[58] 265-267 °C); FT-IR (KBr): 3450,
		1652, 1600, 1530, 1330 cm ⁻¹ ; ¹ H NMR (400 MHz, DMSO-d6):
		δ 12.87 (s, 1H), 8.89 (s, 1H), 8.58-8.56 (t, J = 7.6 Hz, 1H), 8.25-
9		8.23 (d, 1H, J=8.0 Hz), 7.81-7.79 (d, 1H, J=8.0 Hz), 7.54–7.30
		(m, 10H); ¹³ C NMR (100 MHz, DMSO-d6): δ 148.6, 142.5,
		132.9, 131.3, 130.5, 128.9, 128.3, 127.2, 123.5, 119.3; HRMS
		(ESI) m/z Calculated for $C_{21}H_{15}N_3O_2$ (M+1) ⁺ 342.1164, Found
		342.1172.
		2-(3,4-Dimethoxyphenyl)-4,5-diphenyl-1 <i>H</i> -imidazole (3j):
	$\begin{array}{c} Ph \\ N \\ Ph \\ N \\ H \\ 3j \end{array}$	White solid; mp 214-216 °C (lit ^[59] 213-216 °C); FT-IR (KBr):
		3430, 2982, 2900, 2460, 1629, 1210 cm ⁻¹ ; ¹ H NMR(400 MHz,
		DMSO-d6): δ 12.54 (s, 1H), 8.08-8.06 (d, $J = 8.8$ Hz, 2H,
10		ArH), 7.65-7.29 (m, 10H, ArH), 7.00-6.98 (d, $J = 8.8$ Hz, 1H,
		ArH), 3.89 (s, 6H); ¹³ C NMR (100MHz, DMSO-d6): δ 150.2,
		148.1, 145.2, 133.2, 129.6, 129.2, 129.0, 128.9, 128.8, 127.4,
		124.3, 121.0, 115.9, 112.4, 56.4; HRMS (ESI) m/z Calculated
		for $C_{23}H_{20}N_2O_2$ (M+1) ⁺ 356.1525, Found 357.1532.
		2-(2,3-Dimethoxyphenyl)-4,5-diphenyl-1 <i>H</i> -imidazole (3k):
11	o o	White solid; mp 214-216 °C (lit.213-216 ^o C); FT-IR (KBr):
	Ph N Ph N H	3430, 2982, 2900, 2460, 1629, 1210 cm ⁻¹ ; ¹ H NMR(400 MHz,
		DMSO-d6): δ 12.52 (s, 1H), 8.04-8.02 (d, $J = 8.0$ Hz, 1H,
		ArH), 7.65-7.29 (m, 10H, ArH), 7.14-7.12 (t, $J = 8.0$ Hz, 1H,
	3k	ArH), 7.00-6.98 (d, $J = 8.0$ Hz, 1H, ArH), 3.82 (s, 6H, OMe),
		¹³ C NMR (100MHz, DMSO-d6): δ 148.3, 147.9, 147.5, 138.2,
		131.5, 129.6, 129.2, 129.0, 128.9, , 125.4, , 123.3, 119.0, 118.4,
		60.2, 56.4; HRMS (ESI) m/z Calculated for $C_{23}H_{20}N_2O_2$ (M+1) ⁺
		357.1525, Found 357.1532.

		HRMS (ESI) m/z Calculated for $C_{26}H_{28}N_2O_2$ (M+1) ⁺ 401.2151
		Found 401.2155.
		1-Benzyl-2-phenyl-1<i>H</i>-benzo[d]imidazole (5a): Pale vellow
		solid: mp: 130-132°C (lit. ^[14] 130°C): FT-IR (KBr): 3035.
		2928 1609 1587 1497 1271 1150 1110 1020 cm ^{-1.} ¹ H NMR
15		(400 MHz, CDCl ₂): δ 7 87-7 85 (d J = 7.6 Hz 1H) 7.70 –
10		7.67(m - 2H); $7.48 - 7.41 (m - 3H)$; $7.32 - 7.19 (m - 6H)$; 7.10 -
		7.08 (d $I = 8.0 Hz 2H$): 5.44 (s 2H): ¹³ C NMR (100 MHz)
		CDCL): δ 155 01 142 9 136 25 135 9 129 91 129 81 129 15
	5a	128 93 128 63 127 98 127 65 125 84 122 94 122 59 119 85
		110 43 48 23 HRMS (ESI) m/z Calculated for $C_{20}H_1 eN_2$
		$(M+1)^+$ 284 1313 Found 284 1317
		1-(2-Chlorobenzyl)-2-(2-chlorophenyl)-1 <i>H</i> -benzo[d]imidazoles
		(5b): Pale vellow crystal; mp: 159-160°C (lit. ^[14] 158 - 159 °C);
	CI	FT-IR (KBr): 3030, 2945, 1619, 1576, 1492, 1277, 1130, 1130,
		1010, 650 cm ⁻¹ ; ¹ H NMR (400 MHz, CDCl ₃): δ 7.80-7.78 (d,
16	N N	1H, $J = 8.2$ Hz), 7-65-7.63 (d, 1H, $J = 7.6$ Hz), 7.58-7.56 (t, 1H,
		J = 8.0 Hz),7.50-7.48(d, 2H, $J = 8.0$ Hz), 7.44-7.42 (t, 1H, $J =$
		7.6 Hz), 7.39-7.37 (d, 1H, $J = 8.0$ Hz), 7.32-7.30 (t, 2H, $J = 4.0$
	50	Hz), 7.28-7.26 (d, 1H, $J = 7.6$ Hz), 7.19-7.17 (t, 1H, $J = 7.6$ Hz),
		6.68-6.66 (d, 1H, $J = 8.0$ Hz), 5.45 (s, 2H, CH ₂); ¹³ C NMR (100
		MHz, CDCl₃): δ 151.9, 144.7, 136.2, 134.6, 134.4, 133.4, 133.1,
		132.8, 130.9, 130.7, 130.6, 130.5, 129.8, 128.6, 128.50, 125.3,
		124.4, 120.8, 113.2, 46.3; HRMS (ESI) m/z Calculated for
		$C_{20}H_{14}Cl_2N_2$ (M+1) ⁺ 353.0534, (M+3) ⁺ 355.0534, (M+5) ⁺
		357.0534, Found 353.0539 (M+1) ⁺ . 355.0649 (M+3) ⁺ . 357.0833
		(M+5) ⁺ .
		1-(4-Fluorobenzyl)-2-(4-fluorophenyl)-1 <i>H</i> benzo[d]imidazoles
		(5c): Yellow solid; mp: 111-113 °C (lit. ^[15] 111 °C); FT-IR

		Hz), 5.43 (s, 2 H); ¹³ C NMR (100 MHz, CDCl ₃): δ 154.5,
	5h	143.6, 136.3, 136.2, 134.3, 134.6, 133.7, 133.6, 132.7, 131.2,
		129.6, 129.5, 129.3, 124.8, 124.6, 124.1, 123.2, 121.2, 112.5,
		49.1; HRMS (ESI) m/z Calculated for $C_{20}H_{14}Br_2N_2$ (M+1) ⁺
		443.9524, $(M+3)^+$ 445.9524 , $(M+5)^+$ 447.9524, Found
		443.9629 (M+1) ⁺ , 445.962 (M+3) ⁺ , 447.9513 (M+5) ⁺ .
		1-(3-Fluorobenzyl)-2-(3-fluorophenyl)-1 <i>H</i> benzo[d]imidazoles
	F	(5i): White solid; mp: 178-180 ^o C ; FT-IR (KBr): 3062, 2700,
		1618, 1582 cm-1 : ¹ H NMR (400 MHz, DMSO-d6): δ 7.77-
23		7.70 (m, 1H, ArH), 7.57-7.48 (m, 4H, ArH), 7.38-7.31 (m, 1H,
		ArH), 7.30-7.21 (m, 3H, ArH), 7.06-7.01 (dt, J = 2.2 Hz, 1H,
		ArH), 6.84-6.82 (d, $J = 10.0$ Hz, 1H, ArH), 6.75-6.36 (d, 1H,
	F	ArH), 2.47 (s, 2H, CH ₂) ; ¹³ C NMR (100 MHz, CDCl ₃): δ178.9,
		163.4, 139.2, 132.0, 129.4, 129.2, 127.2, 123.0, 115.0; 13C
	5i	NMR (100 MHz, DMSO-d6) δ: 163.0, 162.9, 153.5, 143.5,
		138.0, 132.4, 130.1, 127.9, 123.4, 123.3, 123.2, 119.7, 119.4,
		116.2, 116.0, 113.4, 50.1; HRMS (ESI) m/z Calculated for
		$C2_0H_{14}F_2N_2 (M+1)^+ 321.1125$, Found 321.1130 (M+1) ⁺ .
		1-(4-Ethylbenzyl)-2-(4-ethylphenyl)-1 <i>H</i> -benzo[d]imidazole
	N N	(5j): Yellow solid; mp: 97-99 ^o C; FT-IR (KBr): 3025, 2940,
24		1600, 1574, 15500, 1271, 1140, 1129, 1020 cm-1; ¹ H NMR
	$\langle \rangle$	(400 MHz, CDCl ₃): δ 7.86-7.85 (d, J = 8.4Hz, 1H, ArH), δ
	5j	7.63-7.61 (d, $J = 8.4$ Hz, 2H, ArH),7.28 – 7.25 (m, 3H), 7.21 –
		7.19 (m, 2H), 7.15 – 7.13 (d, $J = 8.0$ Hz, 2H), 7.03-7.00 (d, $J =$
		8.4 Hz, 2H), 5.42 (s, 2H), 2.70-2.68 (q, 2H, CH ₂), 2.63-2.62 (q,
		2H, CH ₂), 1.27-1.20 (t, 6H, CH ₃); ¹³ C NMR (100 MHz,
		CDCl₃): δ 154.3, 146.2, 143.7, 143.1, 136.0, 133.6, 129.3,
		129.1, 128.49, 128.43, 128.2, 128.1, 127.3, 125.9, 122.8, 122.5,
		122.4, 119.8, 119.7, 110.5, 48.2, 28.7, 15.4; : HRMS (ESI) m/z
		Calculated for $C_{24}H_{24}N_2$ (M+1) ⁺ 341.1939, Found 341.1945
		$(M+1)^+$.

¹H NMR spectrum of compound 3a

¹H NMR spectrum of compound entry 3b

¹³C NMR spectrum of compound entry 3b

¹H NMR spectrum of compound entry 3c

¹H NMR spectrum of compound entry 3d

¹³C NMR spectrum of compound entry 3d

¹H NMR spectrum of compound entry 3e

¹³C NMR spectrum of compound entry 3e

¹H NMR spectrum of compound entry 3f

¹³C NMR spectrum of compound entry 3f

¹H NMR spectrum of compound entry 3g

¹³C NMR spectrum of compound entry 3g

¹H NMR spectrum of compound entry 3j

¹³C NMR spectrum of compound entry 3j

¹³C NMR spectrum of compound entry 3I

¹H NMR spectrum of compound entry 3m

¹H NMR spectrum of compound entry 3n

¹³C NMR spectrum of compound entry 3n

¹H NMR spectrum of compound entry 5a

¹H NMR spectrum of compound entry 5b

¹³C NMR spectrum of compound entry 5b

¹³C NMR spectrum of compound entry 5c

¹H NMR spectrum of compound entry 5e

¹³C NMR spectrum of compound 5e

Analysis Report

Sample Type Level Acquired by Processed by

: Unknown : 1

: System Administrator : System Administrator

<Sample Information>

Sample Name	: RSK-1
Sample ID	: RSK-1
Data Filename	: RSK-1.lcd
Method Filename	: Method C18 200-450.lcm
Batch Filename	: 06092013.lcb
Vial #	: 1-2
Injection Volume	: 50 uL
Date Acquired	: 8/8/2015 12:41:45 PM
Date Processed	: 8/8/2015 1:01:49 PM

<Chromatogram>

HPLC report of compound 5e

¹H NMR spectrum of compound entry 5f

¹³C NMR spectrum of compound entry 5f

Analysis Report

Sample Type Level Acquired by Processed by

: Unknown : 1

: System Administrator : System Administrator

<Sample Information>

Sample Name	: RSK-2
Sample ID	: RSK-2
Data Filename	: RSK-2.lcd
Method Filename	: Method C18 200-450.lcm
Batch Filename	: 06092013.lcb
Vial #	: 1-3
Injection Volume	: 50 uL
Date Acquired	: 8/8/2015 1:02:25 PM
Date Processed	: 8/8/2015 1:22:28 PM

<Chromatogram>

HPLC report of compound 5f

¹³C NMR spectrum of compound entry 5i

¹H NMR spectrum of compound entry 5j

¹³C NMR spectrum of compound entry 5j

¹H NMR spectrum of compound entry 5k

¹³C NMR spectrum of compound entry 5k