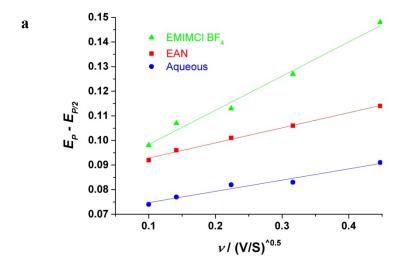
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Supporting Information

Controlled Electrodeposition of Nanostructured Pd Thin Films From Protic Ionic Liquids for Electrocatalytic Oxygen Reduction Reactions


Majid Asnavandi, Bryan H. R. Suryanto, Chuan Zhao¹

School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia

Figure S1. Dependence of peak potential, E_p on log υ

¹ Corresponding author: Tel: +61 2 9385 4645; Fax: +61 2 9385 6141. E-mail address: chuan.zhao@unsw.edu.au

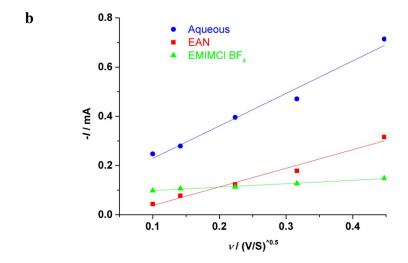


Figure S2. Analyzed curves extracted from cyclic voltammograms for electrodeposition of Pd from different electrolytes, a) dependence of E_p - $E_{p/2}$ on $U^{1/2}$ for charge transfer coefficient determination, b) dependence of I_p on $U^{1/2}$ for diffusion coefficient determination

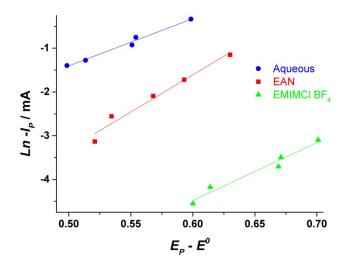
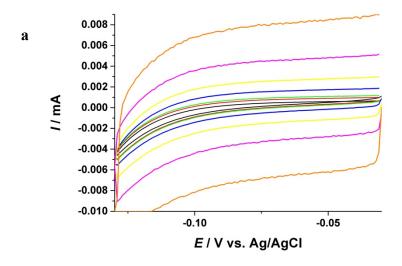



Figure S3. Kinetic constant calculation for Pd reduction

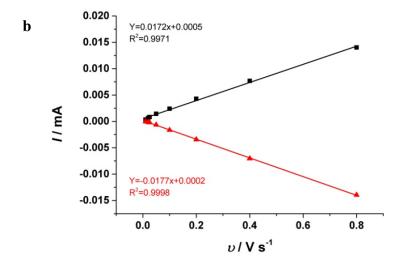


Figure S4. Double-layer capacitance measurements for determining ECSA of Pd electrodeposited from EAN in 1 M KOH, a) cyclic voltammetry in a non-Faradaic region of the voltammogram at scan rates of 0.01, 0.02, 0.025, 0.05, 0.1, 0.2, 0.4, and 0.8 V/S. b) cathodic and anodic currents at -0.08 V vs. Ag/AgCl versus scan rate