Supplementary Data:

Adsorption removal of Congo red over flower-like porous microspheres derived from Ni/Al layered double hydroxide

Weiya Huang ^{a,b}, Xiang Yu^d, Dan Li^{c,*}

^a School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China;

^b Department of Materials Science and Engineering, Taizhou University, Linhai, 317000, China;

^c School of Engineering and Information Technology, Murdoch University, Murdoch, Western Australia, 6150, Australia; Tel: +61 08 9360 2569, Email: <u>l.li@murdoch.edu.au</u>;

^d Department of Chemistry, Jinan University, Guangzhou, 510632, China.

 Table S1. Molecular formula, chemical structure and maximum adsorption wavelength of

 Congo red used in this study.

Generic	Molecular	CAS	Molecular	Purity	Structure	λ_{max}
name	formula		weight			(nm)
Congo red	$C_{32}H_{22}N_6Na_2O_6S_2$	573-58-0	696.66 g/mol	95%		498

Model	Parameter			
Pseudo-first-order	$k_1 (min^{-1})$	0.0283		
	q_e (cal) (mg g ⁻¹)	78.3		
	r ²	0.9425		
Pseudo-second-order	$k_2(g mg^{-1} min^{-1})$	0.00171		
	q_e (cal) (mg g ⁻¹)	245.0		
	r ²	0.9999		
Intra-particle diffusion	$k_{d1} \ (mg \ g^{-1} \ min^{-0.5})$	95.34		
	C ₁	0		
	r_1^2	1		
	$k_{d2} (mg \ g^{-1} \ min^{-0.5})$	23.65		
	C ₂	105.6		
	r_2^2	0.9170		
	$k_{d3} (mg g^{-1} min^{-0.5})$	0.71		
	C ₃	231.4		
	r_{3}^{2}	0.5996		
Elovich	$\alpha \ (mg \ g^{-1} \ min^{-1})$	27.16		
	$\beta (g mg^{-1})$	21.28		
	r ²	0.8514		

Table S2. Pseudo-first-order, pseudo-second-order, intra-particle diffusion and Elovichmodel constants and correlation coefficients using Ni/Al-CLDH-H.

	Ion strength (NaCl mol L ⁻¹)			Dosa	Dosage of adsorbent $(g L^{-1})$			Initial pH		
	0	0.001	0.005	0.1	0.25	0.4	1.0	6	8	10
$q_e \pmod{mg g^{-1}}$	232.63	235.65	238.28	239.0	372.2	234.67	97.20	238.86	239.52	238.17

Table S3. Effect of ion strength, dosage, and initial pH on CR adsorption using Ni/Al-CLDH-H.

Fig. S1. (a) Langmuir, (b) Freundlich, (c) Dubinin-Radushkevich, (d) Temkin, (e) Redlich– Peterson, (f) Sips adsorption isotherms of Ni/Al-CLDH-H at 15 °C, 25 °C, and 35 °C.

Fig. S2. Plot of $LnK_d vs. 1/T$ for the adsorption of CR onto Ni/Al-CLDH-H.