Electronic Supplementary Information

Arylhydrazones of Barbituric Acid: synthesis, coordination ability and catalytic activity of their Co^{II}, Co^{II/III} and Cu^{II} complexes toward peroxidative oxidation of alkanes

Jessica Palmucci,^{*a,b*} Kamran T. Mahmudov,^{*a,c*,*} M. Fátima C. Guedes da Silva,^{*a*,*} Luísa M. D. R. S. Martins,^{*a,d*,*} Fabio Marchetti,^{*b*} Claudio Pettinari,^{*e*} Armando J. L. Pombeiro^{*a*,*}

^a Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisbon, Portugal

^b School of Science and Technology, University of Camerino, Chemistry Section, via S. Agostino 1, 62032 Camerino, Italy

^c Department of Chemistry, Baku State University, Z. Xalilov Str. 23, Az 1148 Baku, Azerbaijan ^d Chemical Engineering Department, Instituto Superior de Engenharia de Lisboa, Instituto

Politécnico de Lisboa, R. Conselheiro Emídio Navarro, 1959-007 Lisboa, Portugal

^e School of Pharmacy, University of Camerino, Chemistry Section, via S. Agostino 1, 62032 Camerino, Italy

*Corresponding authors

E-mail addresses:

<u>kamran_chem@mail.ru</u>, <u>kamran_chem@yahoo.com</u> (Kamran T. Mahmudov) fatima.guedes@tecnico.ulisboa.pt (M. Fátima C. Guedes da Silva) <u>lmartins@deq.isel.ipl.pt</u> (Luísa M. D. R. S. Martins) pombeiro@tecnico.ulisboa.pt (Armando J. L. Pombeiro)

1. ESI-MS analysis

Figure 1S. ESI-MS spectra of H_4L^1 .

Figure 2S. ESI-MS spectra of 1.

Figure 3S. ESI-MS spectra of 2.

Figure 4S. ESI-MS spectra of 3.

Figure 5S. ESI-MS spectra of 4.

Figure 6S. ESI-MS spectra of 5.

Figure 7S. ESI-MS spectra of 6.

3. UV-vis spectroscopy

Compound	$\lambda_{max} (nm)$	$\epsilon (L mol^{-1} cm^{-1})$
H ₄ L ¹	412	27200
	268	6310
1	389	35000
	234	17200
2	482	16100
	367	9940
	270	11200
3	426	42400
	268	51800
4	395	13600
	262	12200
5	389	14500
	269	4840
6	385	42300
	261	13800

Table 1S. Electronic absorption spectral data of H_4L^1 and 1–6.

Figure 8S. Absorption UV-vis spectra of H_4L^1 and 1-6 in water.

3. X-ray analysis

Table 2S. Crystal data, experimental parameters and selected details of the refinement calculations of compounds 1–4.

eunus 1				
Compound	1	2	3	4
Empirical formula	$C_{20}H_{26}N_8Na_2O_{18}S_2$	C ₁₃ H ₁₈ CuN ₆ O ₈	C40H52C03N16O30	C ₁₉ H ₁₈ CoN ₁₀ O ₆ S
Formula weight	776.59	449.87	1413.76	573.42
Crystal system	Triclinic	Triclinic	Triclinic	Monoclinic
Space group	P -1	P -1	P -1	P 21/c
a (Å)	8.2720(9)	7.7709(9)	10.8762(18)	18.9274(10)
b (Å)	10.0598(8)	9.7428(14)	12.0409(17)	8.6362(5)
c (Å)	10.6312(8)	12.4498(15)	12.2165(19)	16.9906(10)
α (deg)	63.001(4)	80.753(6)	79.360(8)	90
β (deg)	74.356(5)	73.757(6)	65.192(8)	105.753(2)
γ (deg)	76.484(5)	75.927(7)	68.570(8)	90
Z	1	2	1	4
$V(Å^3)$	752.64(12)	873.4(2)	1350.9(4)	2673.0(3)
T (K)	150	296	150	296
ρcalc (g/cm ³)	1.713	1.711	1.738	1.425
μ (Mo K α) (mm ⁻¹)	0.303	1.309	1.022	0.773
Rfl collected/unique/obs		6216/1751/1442	13738/13738/8108	29502/4798/2949
$R1^{a} (I \ge 2\sigma)$	0.0396	0.0448	0.1054	0.0852
wR2 ^b $(I \ge 2\sigma)$	0.1008	0.1140	0.3017	0.2114
GOF on F^2	0.955	1.002	1.015	1.059

 $\overline{[a]} R1 = \sum ||Fo| - |Fc|| / \sum |Fo|. [b] wR2 = [\sum [w(Fo^2 - Fc^2)2] / \sum [w(Fo^2)^2]]^{1/2}.$

Table 3S. Crystal data, experimental parameters and selected details of the refinement calculations of compounds **5** and **6**.

Compound	5	6			
Empirical formula	$C_{16}H_{16}CuN_8O_7S$	$C_{20}H_{42}CoN_8O_{26}S_2$			
Formula weight	527.97	933.66			
Crystal system	Monoclinic	Monoclinic			
Space group	P 21/n	P 21/c			
a (Å)	8.6884(17)	15.8042(6)			
<i>b</i> (Å)	11.586(2)	6.5960(2)			
<i>c</i> (Å)	20.943(4)	18.5585(6)			
α (deg)	90	90			
β (deg)	97.642(7)	96.609(1)			
γ (deg)	90	90			
Ζ	4	2			
$V(Å^3)$	2089.4(7)	1921.77(11)			
T (K)	296	296			
ρcalc (Mg/m ³)	1.678	1.614			
μ (Mo K α) (mm ⁻¹)	1.204	0.659			
Rfl collected/unique/obs	20644/3840/3004	43754/3893/3326			
$R1^{a} (I \ge 2\sigma)$	0.0555	0.0491			
wR2 ^b $(I \ge 2\sigma)$	0.1486	0.1237			
GOF on F^2	1.067	1.072			
a] $R_{I} = \sum Fo - Fc / \sum Fo $. [b] $wR_{2} = [\sum [w(Fo^{2} - Fc^{2})2] / \sum [w(Fo^{2})^{2}]]^{1/2}$.					

Figure 9S. X-ray structure 1 (78% completeness) with atom numbering scheme. Symmetry operation to generate equivalent atoms: i) -x,-y,1-z.

Figure 10S. Hydrogen bond interactions (in dashed blue lines; see also Table 3S) in **2–6**. Only in **4** these contacts lead to infinite 1D chains; in all the other compounds such interactions give rise to 3D frameworks.

D-H···A	<i>d</i> (H···A)	$d(\mathbf{D}\cdots\mathbf{A})$	$/(D-H\cdots A)$	Symmetry operation
2				
01W···H1W1···O3	2.12(6)	2 997(7)	167(5)	intra
01W···H1W2···O1	1 79(6)	2.759(7)	174(6)	l-x, l-y-z
N4···H2N···O2W	1.86(7)	2.776(8)	158(6)	intra
04W···H4W1···O3	2.17(6)	2.820(6)	128(5)	-x. 1-vz
N3···H3N···O3	2.01(7)	2.845(7)	175(7)	-x. 1-vz
04W···H4W2···O4	2.07(7)	2.015(7) 2.906(7)	166(6)	x, 1, y, 2 x, 1+y, z
02W···H2W1···O3W	1.89(7)	2.700(7)	173(7)	1-x -v 1-z
02W···H2W2···O4	2.06(7)	2.776(6)	167(9)	-xv.1-z
N6···H6N···O4W	2.03(7)	2.897(8)	163(7)	-x, 1-y, 1-z
03W···H3W1···01W	2.02	2.823(8)	153	x y 1+z
3				
N3…H3N…O8	2.15(11)	2.968(15)	149(9)	x.1+v.z
N4…H4N…O7	2.00(12)	2.772(14)	143(10)	1-x,-v,-z
N7···H7N···O3	2.33(12) 2.43(11)	2.744(12)	101(9)	1-x,-y,1-z
N8···H8N···O4	2.03(8)	2.887(12)	156(10)	x - l + v z
01W···H11W···07	2.20	3.063(17)	168	1-x-1-y-z
02W···H12W···O4	2.05	2.860(14)	155	intra
03W···H13W···O1	1.93(12)	2.764(15)	153(10)	intra
04W…H14W…O3	2.00(13)	2.818(16)	151(11)	intra
01W…H21W…O7	1.93	2.791(15)	170	intra
O3W…H23W…O2W	2.10(13)	2.828(18)	137(8)	1-xvz
O4W…H24W…O11	2.17(11)	2.63(2)	110(6)	1-x,1-y,1-z
O10…H110O5	1.79(8)	2.660(13)	163(9)	intra
012…H112…O8	2.08	2.90(2)	163	-1+x, 1+y, z
O10H210O3W	1.92(11)	2.740(16)	152(11)	-x,-v,1-z
O11H211O1W	2.02	2.67(2)	128	1-x,-y,-z
012···H212···O2W	2.15	2.84(2)	131	1-x,1-y,-z
4				
N12…H12…O12	2.44	3.162(9	142	1-x,-1/2+y,1/2-z
N12…H12…O12	2.47	3.105(9)	132	x,1/2-y,-1/2+z
N22···H22···O13	2.14	2.912(8)	149	x,3/2-y,-1/2+z
5				
O1W…H1W1…O13	2.11(5)	2.925(7)	152(4)	1/2-x, 1/2+y, 1/2-z
O1W…H1W2…O2	1.99(6)	2.790(6)	150(5)	-1+x,y,z
N3…H3…O2	1.97	2.817(5)	168	2-x,-y,1-z
N4…H4…O1W	1.98	2.837(6)	175	intra
N22…H22…O13	2.19	2.961(7)	150	1-x,-y,-z
6				
O1W···H1W1···O2W	2.32(2)	3.085(6)	153(3)	intra
O1W…H1W2…O2	2.24(3)	2.994(4)	147(3)	1/2-x, 3/2+y, 3/2-z
N3…H3N…O1	1.98(3)	2.689(3)	134(3)	intra
N3…H3N…O11	2.14(3)	2.795(3)	129(3)	intra
O2W…H2W2…O1	2.17(3)	2.979(5)	154(3)	intra
O2W…H2W2…O11	2.44(3)	2.946(4)	118(3)	intra
O3W…H3W1…O12	2.05(4)	2.754(3)	158(4)	1-x, 1-y, 1-z
N5···H5N···O2W	1.94(2)	2.813(4)	169(3)	1/2-x,-1/2+y,3/2-z
O3W…H3W2…O4W	1.88(4)	2.685(4)	159(4)	1-x, 1-y, -z
N6H6N…O3	1.96(3)	2.848(3)	168(3)	1-x,-1-y,1-z
O4W…H4W1…O3	1.94(3)	2.762(3)	152(3)	3/2-x, 1/2+y, 1/2-z
O4WH4W2O2	2.04(3)	2.920(4)	168(2)	1/2+x,-1/2-y,-1/2+z
O21H21AO3W	1.73	2.652(4)	169	intra
O22H22AO3W	1.90(3)	2.775(3)	170(3)	1-x, 1-y,-z
O22H22BO1W	1.89(3)	2.781(4)	175(3)	1-x, 1-y, 1-z
023H23A012	1.93(3)	2.789(3)	167(3)	x,y,-1+z
O23H23BO13	1.85(3)	2.717(3)	174(3)	x,-1+y,-1+z

Table 4S. Hydrogen bond interactions (Å, °) in complexes 2–6.

4. Electrochemistry

Figure 11S. Cyclic voltammogram, initiated by the cathodic sweep, of H_4L^1 in a 0.2 M [nBu_4N][BF₄]/NCMe solution, at a Pt disc working electrode (d = 0.5 mm), run at a scan rate of 200 mVs⁻¹.

Figure 12S. Cyclic voltammogram, initiated by the anodic sweep, of **1** in a 0.2 M $[^{n}Bu_{4}N][BF_{4}]/NCMe$ solution, at a Pt disc working electrode (d = 0.5 mm), run at a scan rate of 200 mVs⁻¹.

re 13S. Cyclic voltammogram, initiated by the cathodic sweep, of 2 in a 0.2 M $[^{n}Bu_{4}N][BF_{4}]/NCMe$ solution, at a Pt disc working electrode (d = 0.5 mm), run at a scan rate of 200 mVs⁻¹.

Figure 14S. Cyclic voltammogram, initiated by the cathodic sweep, of **3** in a 0.2 M $[^{n}Bu_{4}N][BF_{4}]/NCMe$ solution, at a Pt disc working electrode (d = 0.5 mm), run at a scan rate of 200 mVs⁻¹. * $[Fe(\eta^{5}-C_{5}H_{5})_{2}]^{0/+}$.