Electronic Supplementary Information for

Selective oxidative cleavage of terminal olefins into aldehydes catalyzed by copper(II) complex

Chun Mi, Xiang-Guang Meng*, Xiao-Hong Liao, Xiao peng

Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China

Supporting Information

Fig. S1 The yield and selectivity of benzaldehyde as a function of solution pH for the catalytic oxidation of styrene. [styrene]₀ = 0.05 mol·L⁻¹, [H₂O₂]₀ = 0.25 mol·L⁻¹, [LCu] = 2×10^{-4} mol·L⁻¹, pH8.0, 30 °C. \blacktriangle yield, • selectivity

^{*} Corresponding author. Tel. +86-28-85462979; fax: +86-28-85412907 *E-mail*: mengxgchem@163.com

Fig. S2 Plots of $\ln(c_0/c_t)$ *vs.* reaction time *t* for the oxidation of styrene. [styrene]₀ = 0.01 mol·L⁻¹, [H₂O₂]₀ = 0.2 mol·L⁻¹, [LCu] = 4×10⁻⁵ mol·L⁻¹, pH8.0, 30 °C.

Fig. S3 GC profile of styrene oxidation reaction in acetonitrile after 1 h. [styrene]₀ = 0.05 mol·L⁻¹, [H₂O₂]₀ = 0.25 mol·L⁻¹, [LCu] = 2×10^{-4} mol·L⁻¹, pH8.0, 30 °C.

Fig. S4 The UV-Vis spectral changes showing the reactive species vs time *t* at pH8.0 and 30 $^{\circ}$ C. Insert: time course of absorbance change of the active species at 324 nm.

Fig. S5 NBO charge distributions of styrene were carried out at the mpwb95/6-311G(d, p) pop=nbo level. (carbon atoms are illustrated in red, hydrogen atom in blue).

Methods

Typical Method for isolation of aldehydes 2a, 2b, 2c, 2d, 2e, 2g, 2i, 2k and 2l

The typical oxidative cleavage reaction solution in Table 3 containing 0.5 mol·L⁻¹ olefin, 2×10^{-3} mol·L⁻¹ copper(II) complex and 2.5 mol·L⁻¹ H₂O₂. After the resulting mixture was stirred at 30 °C for 1 h, the mixture was then extracted with dichloromethane, and the combined organic extracts were dried over anhydrous Na₂SO₄, filtered and the solvent removed under vacuum. The crude product was

purified via a standard silica gel chromatography using hexanes/ethyl acetate (=10/1-1/1, v/v) as eluent to give the desired aldehyde product. To ensure the general synthetic utility of our catalytic system, isolated products were characterized by NMR (in CDCl₃ with TMS as an internal standard) and ESI-MS. All the reactions were performed at least three times to establish the reproducibility and reliability.

NMR data for aldehyde 2a, 2b, 2c, 2d, 2e, 2g, 2i, 2k and 2l matched that reported in literatures.^{S1-S3}

Benzaldehyde^{S1}, **2a**, yield: 73.2%. ¹H NMR (400MHz, CDCl₃) δ 7.53-7.56 (m, 2H), 7.62-7.67 (m, 1H), 7.88-7.91 (m, 2H), 10.03 (s, 1H); ¹³C NMR (100MHz, CDCl₃) δ 192.43, 136.37, 134.48, 129.74, 129.00. ESI-MS: m/z 107.05 (Calcd. for [M⁺+1]: 107.04).

4-methyl-benzaldehyde^{S1}, **2b**, yield: 72.2%. ¹H NMR (400MHz, CDCl₃) δ 2.43 (s, 3H), 7.32 (d, J=8.0 Hz, 2H), 7.77 (d, J=8.0 Hz, 2H), 9.96 (s, 1H); ¹³C NMR (100MHz, CDCl₃) δ 191.98, 145.54, 134.17, 129.83, 129.70, 21.86; ESI-MS: m/z 121.07 (Calcd. for [M⁺+1]: 121.06).

4-methoxy-benzaldehyde^{S1}, **2c**, yield: 70.3%. ¹H NMR (400MHz, CDCl₃) δ 3.88 (s, 1H), 7.00 (d, J=8.0 Hz, 2H), 7.84 (d, J=8.0 Hz, 2H), 9.88 (s, 1H); ¹³C NMR (100MHz, CDCl₃) δ 190.87. 164.61, 132.00, 129.92, 114.32, 55.60; ESI-MS: m/z 137.05 (Calcd. for [M⁺+1]: 137.05).

3,4-Dimethoxybenzaldehyde^{S1}, **2d**, yield: 73.0%. ¹H NMR (400MHz, CDCl₃) δ 3.96 (s, 3H), 3.99 (s, 3H), 7.00 (d, J=8.0 Hz, 1H), 7.43 (d, J=1.6 Hz, 1H), 7.47-7.50 (dd, J=8.0 2.0 Hz, 1H), 9.87 (s, 1H); ¹³C NMR (100MHz, CDCl₃) δ 190.96, 154.46, 149.59, 130.11, 126.96, 110.35, 108.83, 56.21, 56.03; ESI-MS: m/z 167.07 (Calcd. for [M⁺+1]: 166.06).

4-hydroxy-3-methoxybenzaldehyde ^{S1}, **2e**, yield: 70.1%. ¹H NMR (400MHz, CDCl₃) δ 3.99 (s, 1H), 6.31 (s, 1H), 7.06 (d, J=8.0 Hz, 1H), 7.44-7.46 (m, 2H), 9.85 (s, 1H); ¹³C NMR (100MHz, CDCl₃) δ 190.94, 151.69, 147.15, 129.87, 127.58, 114.34,

4

108.80, 56.13; ESI-MS: m/z 153.04 (Calcd. for [M⁺+1]: 153.02).

4-Bromobenzaldehyde^{S1}, **2g**, yield: 68.8%. ¹H NMR (400MHz, CDCl₃) δ 7.71 (d, J=8.0 Hz, 2H), 7.77 (d, H=8.0 Hz, 2H), 10.00 (s, 1H); ¹³C NMR (100MHz, CDCl₃) δ 191.12, 135.04, 132.45, 130.99, 129.81; ESI-MS: m/z 184.90 (Calcd. for [M⁺+1]: 184.96).

4-Nitrobenzaldehyde^{S1}, **2i**, yield: 61.9%. ¹H NMR (400MHz, CDCl₃) δ 8.09-8.12 (m, 2H), 8.42 (d, J=8.0 Hz, 2H), 10.18 (s, 1H); ¹³C NMR (100MHz, CDCl₃) δ 190.35, 151.13, 140.04, 130.62, 124.34; ESI-MS: m/z 152.01 (Calcd. for [M⁺+1]: 152.03).

Phenylacetaldehyde^{S2}, **2k**, yield: 51.1%. ¹H NMR (400MHz, CDCl₃) δ 3.72 (d, J=2.4 Hz, 2H), 7.25-7.43 (m, 5H), 9.78 (t, J=2.4 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ 199.56, 131.86, 129.66, 129.03, 127.45, 50.60; ESI-MS: m/z 143.07 (Calcd. for [M⁺+Na]: 143.06).

Heptaldehyde ^{S3}, **21**, yield: 56.5%. ¹H NMR (400MHz, CDCl₃) δ 0.85-0.89 (m, 3H), 1.29 (s, 6H), 1.58-1.65 (m, 2H), 2.39-2.43 (td, J=7.2 2.0 Hz, 2H), 9.75 (t, J=1.6 Hz, 1H); ¹³C NMR (100MHz, CDCl₃) δ 202.90, 43.87, 31.51, 28.80, 22.42, 22.00, 13.95; ESI-MS: m/z 115.10 (Calcd. for [M⁺+1]: 115.10).

Notes and References

- S1 N. Jiang and A. J. Ragauskas, Org. Lett., 2005, 7, 3689.
- S2 A. D. Chowdhury, R. Ray and G. K. Lahiri, Chem. Commun., 2012, 48, 5497.
- S3 V. Kogan, M. M. Quintal and R. Neumann, Org. Lett., 2005, 7, 5039.

NMR spectra

Fig. S6 The ¹HNMR spectrum of the 1,2-dimethoxy-4-vinylbenzene (1d).

Fig. S7 The ¹³CNMR spectrum of the 1,2-dimethoxy-4-vinylbenzene (1d).

Fig. S8 The ¹HNMR spectrum of the 1-methoxy-4-vinylbenzene (1c).

Fig. S9 The ¹³CNMR spectrum of the 1-methoxy-4-vinylbenzene (1c).

Fig. S10 The ¹HNMR spectrum of the Benzaldehyde (2a).

Fig. S11 The ¹³CNMR spectrum of the Benzaldehyde (2a).

Fig. S12 The ¹³HNMR spectrum of the 4-methyl-benzaldehyde (2b).

Fig. S13 The ¹³CNMR spectrum of the 4-methyl-benzaldehyde (2b).

Fig. S14 The ¹³HNMR spectrum of the 4-Bromobenzaldehyde (2g).

Fig. S15 The ¹³CNMR spectrum of the 4-Bromobenzaldehyde (2g).

Fig. S16 The ¹³HNMR spectrum of the 4-Nitrobenzaldehyde (**2i**).

Fig. S17 The ¹³CNMR spectrum of the 4-Nitrobenzaldehyde (2i).

Fig. S18 The ¹³HNMR spectrum of the 4-methoxy-benzaldehyde (2c).

Fig. S19 The ¹³CNMR spectrum of the 4-methoxy-benzaldehyde (**2c**).

Fig. S20 The ¹³HNMR spectrum of the 4-hydroxy-3-methoxybenzaldehyde (2e).

Fig. S21 The ¹³CNMR spectrum of the 4-hydroxy-3-methoxybenzaldehyde (2e).

Fig. S22 The ¹³HNMR spectrum of the 3,4-Dimethoxybenzaldehyde (**2d**).

Fig. S23 The ¹³CNMR spectrum of the 3,4-Dimethoxybenzaldehyde (2d).

Fig. S24 The ¹³HNMR spectrum of the Phenylacetaldehyde (2k).

Fig. S25 The ¹³CNMR spectrum of the Phenylacetaldehyde (**2k**).

Fig. S26 The ¹³HNMR spectrum of the Heptaldehyde (21).

Fig. S27 The ¹³CNMR spectrum of the Heptaldehyde (21).