Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Endophyte inspired chemical diversity from *beta*-caryophyllene

Hao-Yu Tang, Jin-Ming Gao* and Qiang Zhang*

Contents

General Procedures	2		
Fermentatiuon Biotransformation of β -Caryophyllene			
Calculation Procedures	4		
Figure S1. HPLC profiles of A. tubingensis KJ-9 fermentation	4		
Figure S2. Assignments of ¹ H (500M Hz) and ¹³ C (125M Hz) NMR Data	5		
Figure S3. ¹ H (500M Hz) and ¹³ C (125M Hz) NMR and DEPT spectra of 1	7		
Figure S4. HSQC of 1	8		
Figure S5. ¹ H- ¹ H COSY	9		
Figure S6. HMBC of 1	10		
Figure S7. NOESY of 1	11		
Figure S8. ¹ H (500M Hz) and ¹³ C (125M Hz) NMR and DEPT spectra of 2	12		
Figure S9. HSQC spectrum of 2	13		
Figure S10. COSY spectrum of 2	14		
Figure S11. HMBC spectrum of 2	15		
Figure S12. NOESY spectrum of 2	16		
Figure S13. ¹ H (500M Hz) and ¹³ C (125M Hz) NMR and DEPT spectra of 3	17		
Figure S14. HSQC of 3			
Figure S15. COSY of 3	19		
Figure S16. HMBC of 3	20		
Figure S17. NOESY of 3	21		
Figure S18. 1 H (125M Hz) and 13 C NMR of 4	22		
Figure S19. HSQC of 4	23		
Figure S20. ¹ H- ¹ H COSY of 4	24		
Figure S21. HMBC of 4	25		
Figure S22. NOESY of 4			
Figure S23. ¹ H (500M Hz) and ¹³ C (125M Hz) NMR and DEPT spectra of 5	27		
Figure S24. HSQC of 5			

Figure S25.	¹ H- ¹ H COSY of 5	29
Figure S26.	HMBC of 5	
Figure S27.	NOESY of 5	
Figure S28.	¹ H (500M Hz) and ¹³ C (125M Hz) NMR spectra of 6	
Figure S29.	HSQC of 6	
Figure S30.	¹ H- ¹ H COSY of 6	34
Figure S31.	HMBC of 6	35
Figure S32.	NOESY of 6	36
Figure S33.	¹ H (500M Hz) and ¹³ C (125M Hz) NMR and DEPT spectra of 7	
Figure S34.	HSQC of 6	
Figure S35.	¹ H- ¹ H COSY of 6	
Figure S36.	HMBC of 6	40
Figure S37.	NOESY of 6	41

General Procedures

UV spectra were obtained using a Evolution 300 UV-vis Spectrophotometer (Thermo Fisher Scientific Inc., USA). IR were recorded on a Bruker Tensor 27 spectrophotometer with KBr disks (Bruker Corp., German). Optical rotations were measured on a Autopol III automatic polarimeter (Rudolph Research Analytical, USA). CD spectrum were obtained on a Chirascan CD Spectrometer (Applied Photophysics Ltd., United Kingdom). ESI-MS was performed on a LTQ Fleet instrument (Thermo Fisher Scientific Inc., USA). HR ESIMS was performed on an Agilent 6520 Accurate-Mass Q-TOF LC/MS spectrometer (Agilent Technologies Ltd., USA). 1D and 2D NMR spectra were recorded on a AVANCE III (500 MHz) instrument (Bruker Corp., German). Chemical shifts were reported using solvent residual as the internal standard. High performance liquid chromatography (HPLC) analysis and semi-preparation was performed on a Waters 1525 instrument (Waters Corp.). Column chromatography was performed on silica gel (90–150 μ m; Qingdao Marine Chemical Inc., China), MCI gel (75–150 μ m; Mitsubishi Chemical Corp., Japan), Sephadex LH-20 (40–70 μ m; Amersham Pharmacia Biotech AB, Uppsala, Sweden), and Chromatorex C₁₈ gel (40–75 μ m; Fuji Silysia Chemical LTD., JPN). GF₂₅₄ plates (Qingdao Marine Chemical Inc., China) were used for thin-layer chromatography (TLC).

Fermentatiuon Biotransformation of β -Caryophyllene

The microorganism *Aspergillus tubingensis* KJ-9 was incubated in potato dextrose agar (PDA) at 25°C for 3 days. One piece (approximately 7 mm²) of mycelium and liquid state β -Caryophyllene with no solvent (333 μ L) was fermented aseptically to a

500ml Erlenmeyer flask containing 150 mL of potato dextrose (PD) liquid medium. 47 flasks were shook at 130 rpm, 27 ± 0.5 ^oC for 10 days. Another 3 parallel controls were conducted at the same time. Ethyl acetate (EtOAc) extraction of the fermentation and the controls were compared on HPLC with an Agilent TC-C18 column (250×4.6 mm, 10--100% methanol in 30 min, 1ml/min, detected at 254 and 210nm).

The fermentation broth was extracted by EtOAc to yield 12g of residue A. The residue was then chromatographed on a silica flash collumn (eluted with gradient Chloroform-Methanol) to give four fractions (Fr.1-Fr.4). Fr.2 (3.4g) was subjected on a Sephadex LH-20 (Methanol) and silica flash chromatography (eluted with gradient Petroleum ether-Acetone) to give three subfractions (Fr.21-Fr.23). Fr.21 (760mg) was purified on a semi-preparative HPLC C₁₈ column (Thermo BDS Hypersil 250×10 mm, eluted with 64% Methanol) to afford compound **3** (14mg), compound **5** (24mg) and compound **7** (21mg). Fr.23 (380mg) was seperated on the semi-preparative HPLC C₁₈ column (eluted with 55% Methanol) to yield compound **1** (16mg), compound **2** (2.8mg), compound **4** (24mg). Fr.3 (3.9g) was chromatographed with Sephadex LH-20 (methanol) and flash ODS column to give seven subfractions (Fr.31-Fr.37). Fr.36 (197mg) was separated on the semi-preparative HPLC C₁₈ column (eluted with 63% methanol) to yield compound **6** (18mg).

Compound 1: white amorphous solid; $[\alpha]_D^{29} - 129.0$ (*c* 0.14, CHCl₃); UV (MeCN) $\lambda_{max}(\log \varepsilon)$ 248 nm (3.91); CD (MeCN) λ ($\Delta \varepsilon$ in cm⁻¹M⁻¹) 205 (-9.3), 224 (-3.1), 248 (-7.8), 329 (+1.1) nm; IR (KBr) ν_{max} 3402, 2956, 2873, 2801, 1653, 1602, 1459, 1380, 1283, 1205, 1048, 1031 cm⁻¹; ¹H NMR and ¹³C NMR data, see Figure S2; ESIMS *m*/*z* 235.10 [M+H]⁺; HR ESIMS *m*/*z* 257.1508 [M+Na]⁺ (calcd. for C₁₅H₂₂O₂ [M+Na]⁺ 257.1512).

Compound 2: white amorphous solid; $[\alpha]_D^{26} - 115.6 (c \ 0.09, CHCl_3)$; UV (MeCN) $\lambda_{max}(\log \varepsilon)$ 244 nm (3.98); CD (MeCN) $\lambda (\Delta \varepsilon$ in cm⁻¹M⁻¹) 210 (+10.8), 246 (-7.4), 335 (+1.7) nm; IR (KBr) v_{max} 3423, 2925, 2873, 1645, 1613, 1461, 1379, 1272, 1234, 1032 cm⁻¹; ¹H NMR and ¹³C NMR data, see Figure S2; ESIMS *m*/*z* 235.21 [M+H]⁺; HR ESIMS *m*/*z* 257.1504 [M+Na]⁺(calcd. for C₁₅H₂₂O₂ [M+Na]⁺ 257.1512).

Compound 3: colorless oil; $[\alpha]_D^{26} - 11.8 (c \ 0.12, CHCl_3)$; UV (MeCN) $\lambda_{max}(\log \varepsilon)$ 193 nm (3.85); CD (MeCN) $\lambda (\Delta \varepsilon \text{ in cm}^{-1}\text{M}^{-1})$ 207 (-4.7), 239 (+8.1) nm; IR (KBr) ν_{max} 3464, 2952, 2928, 1669, 1459, 1388, 1373, 1308, 1265, 1198, 1089, 1024 cm⁻¹; ¹H NMR and ¹³C NMR data, see Figure S2; ESIMS *m*/*z* 235.23 [M+H]⁺; HR ESIMS *m*/*z* 257.1505 [M+Na]⁺(calcd. for C₁₅H₂₂O₂ [M+Na]⁺ 257.1512).

Compound 4: colorless oil; $[\alpha]_D^{29}$ –89.3 (*c* 0.08, CHCl₃); UV (MeCN) $\lambda_{max}(\log \varepsilon)$ 237 nm (4.13); CD (MeCN) λ ($\Delta \varepsilon$ in cm⁻¹M⁻¹) 201 (+8.4), 234 (-4.4) nm; IR (KBr) v_{max} 3440, 2949, 2870, 2852, 1660, 1442, 1379, 1685, 1319, 1296, 1252, 1048 cm⁻¹; ¹H NMR and ¹³C NMR data, see Figure S2; ESIMS *m*/*z* 257.12 [M+Na]⁺; HR ESIMS *m*/*z* 257.1506 [M+Na]⁺(calcd. for C₁₅H₂₂O₂ [M+Na]⁺ 257.1512).

Compound 5: colorless oil; $[\alpha]_D^{26} - 93.1$ (*c* 0.11, CHCl₃); UV (MeCN) $\lambda_{max}(\log \varepsilon)$ 193 nm (4.28); CD (MeCN) $\lambda (\Delta \varepsilon$ in cm⁻¹M⁻¹) 200 (+11.7), 226 (-3.0) nm; IR (KBr) v_{max} 3437, 2952, 2931, 2874, 1726, 1665, 1631, 1437, 1378, 1316, 1250, 1134 cm⁻¹; ¹H NMR and ¹³C NMR data, see Figure S2; ESIMS *m*/*z* 263.20 [M+H]⁺; HR ESIMS *m*/*z* 285.1452 [M+Na]⁺(calcd. for $C_{16}H_{22}O_3 \ [M+Na]^+ \ 285.1461).$

Compound 6: crystal; $[\alpha]_D^{21}$ +60.5 (*c* 0.20, CHCl₃); IR (KBr) v_{max} 3277, 2959, 2924, 2868, 1448, 1386, 1033, 993 cm⁻¹; ¹H NMR and ¹³C NMR data, see Figure S2; EIMS *m/z* 236 [M]⁺; HR EIMS *m/z* 236.1775 [M]⁺(calcd. for C₁₅H₂₄O₂ [M]⁺ 236.1776).

Compound 7: colorless oil; $[\alpha]_D^{29}$ +46.1 (*c* 0.12, CHCl₃); IR (KBr) v_{max} 3441, 2927, 2868, 1459, 1732, 1379, 1068, 1016 cm⁻¹; ¹H NMR and ¹³C NMR data, see Figure S2; EIMS *m*/*z* 250 [M]⁺; HR EIMS *m*/*z* 250.1935 [M]⁺(calcd. for C₁₆H₂₆O₂ [M]⁺ 250.1933).

Calculation Procedures

A preliminary conformational search was performed in Conflex6.7 using MMFF94s forcefield.¹ Conformers were saved and further optimized using the density functional theory (DFT) method and CPCM solvent model at B3LYP/6-311++G(d,p) level in Gaussian 09 software package.² Frequency was calculated at the same level of theory to check optimized results. The stable conformers with populations greater than 1% and without imaginary frequencies were submitted to ECD calculation by the TDDFT [B3LYP/aug-cc-pVDZ or cam-B3LYP/TZVP] method associated with CPCM solvent model in MeCN. The excitation energies (E), oscillator strength (f), rotatory strength in velocity form (R_{vel}), and rotatory strength in length form (R_{len}) of the lowest 32 excited states were calculated. ECD spectra of different conformers were summated in SpecDis 1.62 according to their Boltzmann-calculated distributions.³ The half bandwidths and UV-shifts of CD summation were recorded as Table S1.

Table S1 Parameters in CD curves summation

Compd.	NC*	CD calculation method	half bandwidth (σ , eV)	UV-shifts (nm)
1	6	Cam-B3LYP/TZVP	0.30	+6
2	6	B3LYP/aug-cc-pVDZ	0.30	-11
3	1	Cam-B3LYP/TZVP	0.30	+5
5	2	B3LYP/aug-cc-pVDZ	0.29	-9

*NC, number of stable conformers

Figure S1. HPLC profiles of *A. tubingensis* KJ-9 fermentation

Chromatographi ccondition: Agilent TC-C18 column, gradient 10-100% MeOH in 30 min, detected by 230 nm

Figure S2. Assignments of ¹H (500M Hz) and ¹³C (125M Hz) NMR Data

cm

compd # 6

compd # 7

 δ in ppm, J in Hz; ^aoverlapped

Figure S4. HSQC of 1

Figure S5. ¹H-¹H COSY

Figure S9. HSQC spectrum of 2

Figure S10. COSY spectrum of 2

Figure S11. HMBC spectrum of 2

Figure S12. NOESY spectrum of 2

Figure S14. HSQC of 3

Figure S17. NOESY of 3

Figure S18. ¹H (125M Hz) and ¹³C NMR of 4

Figure S19. HSQC of 4

Figure S20. ¹H-¹H COSY of 4

Figure S25. ¹H-¹H COSY of 5

Figure S28. ¹H (500M Hz) and ¹³C (125M Hz) NMR spectra of 6

Figure S34. HSQC of 6

Figure S35. ¹H-¹H COSY of 6

Figure S37. NOESY of 6