Metabolic profile of Yi-Xin-Shu capsule in rat by ultra performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis

Hongping Wang, Chang Chen, Yan Liu, Xiaowei Yang, Hongbin Xiao^a

Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences,

Beijing 100700, China

Supplementary Data

Content S1 Identification of metabolites of YXS

A total of 62 YXS-related metabolites were tentatively identified in rat biofluids. According to the origins of parent compounds and structural types, all these metabolites were categorized as lignans-related, tanshinone-related and ginsenosiderelated compounds (shown in Table S2). The prototype compounds were showed in Table S1.

1.1. Identification of lignans-related metabolites

Total 37 lignans-related metabolites were tentatively identified in rat biofluids by comparison with the literature or the fragmentation ions obtained from their MS/MS spectra. All of them were mainly generated from three parent compounds, including Schisandrin A, Schisandrin B and Schisantherin B. Total 11 metabolites, including **M1**, **M2**, **M4**, **M6-M8**, **M10**, **M12**, **M24**, **M26** and **M29** were firstly identified in this study.

M30 was tentatively identified as Schisandrin A metabolites, which were formed by losses of 2CH₂. **M1**, **M2** and **M7** showed the precursor ion at m/z 419.1705 (C₂₂H₂₇O₈), 30 Da more than that of **M30**. The fragmentation ions at m/z 401.1570, 359.1480, 331.1166 and 316.0931 suggested that H₂O, C₃H₆, CO and CH₃ were successively eliminated from [M+H]⁺. The MFB from **M30** to **M1**, **M2** as well as **M7** is -H2+O2. Based on the data mentioned above, **M1**, **M2** and **M7** were demethylation to carboxylic acid metabolites of **M30**. The MS/MS spectrum of **M2** was shown in Fig. 2 (A). **M4**, **M8**, **M10** and **M12** were observed at m/z 417.1912 (C₂₃H₂₉O₇), 16 Da more than that of Schisandrin B. The fragmentation pathways of **M4**, **M8**, **M10** and M12 were similar to that of Schisandrin B. Thus, M4, M8, M10 and M12 were oxidation metabolites of Schisandrin B. M24 and M26 gave the precursor ion at m/z415.1755 (C₂₃H₂₇O₇), 14 Da more than that of Schisandrin B. The fragmentation ions at *m/z* 397.1583, 385.1667, 373.1772, 366.1451, 342.1080 and 327.1198 were formed by the individual or combined losses of H₂O, OCH₂, C₃H₆ or OCH₃. The MFB from Schisandrin B to M24 as well as M26 is -H2+O. Thus, M24 and M26 were identified as methylene to Ketone metabolites of Schisandrin B. Similarly, M6 was deduced as metabolite of Schisandrin B and was formed by the loss of CH₂ and di-oxidation. M29 showed the precursor ion at m/z 485.2172 (C₂₇H₃₃O₈), 30 Da less than that of Schisantherin B. The fragmentation ion at m/z 401.1560, 383.1464, 352.1295 and 337.1067 indicating that C₆H₁₂, H₂O, OCH₃ and CH₃ were successively eliminated from [M+H]⁺. Other fragmentation ions at *m/z* 371.1483, 341.1015 and 326.1128 were formed by the successively losses of OCH₂, OCH₂ and CH₃ from $[M+H-C_6H_{12}]^+$. The MFB from Schisandrin B to M29 is -C-H2-O. Based on the data, we deduced M29 was metabolite of Schisantherin B and was formed by the loss of OCH₂.

1.2. Identification tanshinone-related metabolites

Total 17 tanshinone-related metabolites were tentatively identified in rat biofluids, shown in Table 2. The detected result suggested that the tanshinone-related metabolites were mainly generated from three parent compounds, including Cryptotanshinone, Tanshinone IIA and Tanshinone I.

M40-M42 and **M48** showed the precursor ion at m/z 313.1438 (C₁₉H₂₁O₄), 16 Da more than that of Cryptotanshinone. The fragmentation ions of **M40-M42** were observed at *m/z* 285.1472, 267.1397 and 252.1150, which were formed via the successive losses of CO, H₂O and CH₃ from $[M+H]^+$. The fragmentation ion at m/z254.1301[M+H-CO-CH₂OH]⁺ indicated that there was a CH₂OH in the structure. Different from M40-M42, the fragmentation ions of M48 were observed at m/z295.1437, 277.1348 and 262.1104, which were formed via the successive losses of H₂O, H₂O and CH₃. The MFB from Cryptotanshinone to M40-M42 as well as M48 is +O. Thus, M40-M42 and M48 were deduced as Hydroxylation metabolites of Cryptotanshinone. The hydroxylation positions of M40-M42 were CH₃ group while M48 was CH_2 group. M43, M46, M47 and M51 showed the precursor ion at m/z329.1387, 16 Da more than that of M48. Due to the fragmentation pathway was similar to that of M48 and the MFB from M48 to M43, M46, M47 as well as M51 is +O, we deduced that M43, M46, M47 and M51 were di-hydroxylation metabolites of Cryptotanshinone. Similarly, M38 was deduced as tri-hydroxylation Cryptotanshinone due to it was 16 Da more than di-hydroxylation Cryptotanshinone and owned the same fragmentation pathway as M43, M46, M47 and M51. The MS/MS spectrum was shown in Fig. 2(B).

M39 and **M45** gave the precursor ion at m/z 293.0816, 16 Da more than that of Tanshinone I. In their MS/MS spectra, the fragmentation ions were observed at m/z 265.1137, 234.0703 and 219.0817, indicating CO, CH₂OH and CH₃ were successively eliminated from [M+H]⁺. The MFB from Tanshinone I to them is +O. Based on the data, **M39** and **M45** were deduced as hydroxylation metabolites of Tanshinone I. **M50** gave the precursor ion at m/z 311.1281, 16 Da more than that of Tanshinone II A. In

the MS/MS spectra, the fragmentation ions were observed at m/z 283.1337, 265.1218, 250.0992 and 222.1018 indicating that H₂O, H₂O, CH₃ and CO were successively eliminated from [M+H]⁺. The MFB from Tanshinone II A to **M50** is +O. Thus, **M50** was deduced as hydroxylation metabolite of Tanshinone II A. In the same way, **M42** was assigned as di-hydroxylation metabolite of Tanshinone II A. **M52** showed the precursor ion at m/z 293.1176, 2 Da less than that of Tanshinone II A. Due to the fragmentation pathway of **M52** was similar to that of Tanshinone II A, **M52** was deduced as dehydrogenation metabolite of Tanshinone II A. **M49** gave the precursor ion at m/z 327.1231, 16 Da more than that of Tanshinone II B. In the MS/MS spectra, the fragmentation ion at m/z 3091124 and 281.1178 suggesting H₂O, CO were successively eliminated from [M+H]⁺. The fragmentation ion at m/z 250.1091[M+H-H₂O-CO-CH₂OH]⁺ indicating that there is CH₂OH in the structure. The MFB from Tanshinone II B.

1.3. Identification ginsenoside-related metabolites

10 ginsenoside-related metabolites were detected from the drug-containing plasma, feces samples as well as urine sample, shown in Table 2. The results suggested that almost all of the detected metabolites were secondary glycosides, which were formed by sequential deglycosylation metabolites in intestine. According to the structural types of ginsenosides, they were generally divided into three groups, including (20*S*)-protopanaxatriols type (Group I), (20*S*)-protopanaxadiols type (Group II) and oleananes type (Group III), which yielded the characteristic aglycone ions at *m/z* 475.3787, 459.3848 and 455.3510, respectively.

Metabolites **M54** and **M58** yielded the characteristic aglycone ion at m/z 475.3817, indicating that they were (20*S*)-protopanaxatriols type ginsenosides. **M54** and **M58** were assigned as ginsenoside F₁ or its isomer as it showed the adduct ion at m/z 683.4382, which was162 Da (Glc) more than that of aglycone ion. **M53** showed the deprotonated ion at m/z 1123.5893, 16 Da more than that of ginsenoside Rb₁. The fragmentation ions at m/z 961.5382, 799.4846, 637.4310 and 475.3780 were formed by the successive losses of Glc from [M-H]⁻. Due to **M53** was absent from YXS but presented in the rat biofluid, **M53** was deduced as metabolite of ginsenoside. The MFB from ginsenoside Rb₁ to **M53** is +O. Therefore, **M53** was assigned as oxidation metabolite of ginsenoside Rb₁.

Metabolites **M55-M57** and **M59** yielded the characteristic aglycone ion at m/z 459.3849, indicating that they were (20*S*)-protopanaxadiols type ginsenosides. The fragmentation pathways were similar to those of ginsenoside Rd. Thus, **M56**, **M57** and **M59** were tentatively deduced as Rd isomer.

Metabolites M60-M62 yielded the characteristic aglycone ion at m/z 455.3525, indicating that they were oleananes type compounds. M60 gave the deprotonated ion at m/z 793.4381, 162 Da less than ginsenoside Ro. After Glc being eliminated, the fragmentation pathway of ginsenoside Ro was similar to that of M60. Thus, M60 was tentatively deduced as Glc removal metabolite of ginsenoside Ro. The MS/MS spectrum of M60 was shown in Fig. 2(C). Similarly, M61 and M62 were tentatively deduced as 2Glc removal metabolites of ginsenoside Ro and Ro isomer, respectively.

Fig. S1 The metabolic pathways of Schisandrin A.

No.	t _R	Molecular	Measured	Diff	Compound name	Source
	(min)	formula	value (m/z)	(ppm)		
			$[M+H]^+$			
Protot	type lignan	S				
1	8.85	$C_{28}H_{34}O_{10}$	548.2493 ^b	-0.55	Gomisin D isomer	Р
2	9.37	$C_{24}H_{32}O_7$	433.2223	-0.69	Schizandrol A ^{<i>a</i>}	P, U
3	9.63	$C_{28}H_{34}O_{10}$	548.2501 ^b	0.91	Gomisin D	P, U, F
4	10.05	$C_{24}H_{32}O_7$	433.2226	0	Schizandrol A isomer	Р
5	10.15	$C_{22}H_{28}O_{6}$	389.1962	-0.51	Gomisin J	F
6	10.34	$C_{22}H_{28}O_{6}$	389.1963	-0.26	Gomisin J isomer	F
7	10.57	$C_{29}H_{38}O_9$	548.2858 ^b	-0.36	Tigloyl gomisin Q/Angeloyl gomisin	P, F
8	10.72	$C_{23}H_{28}O_{6}$	401.1967	0.75	Kadsuranin/isomer	U
9	10.97	$C_{23}H_{28}O_{6}$	401.1966	0.50	Kadsuranin/isomer	P, U
10	10.98	$C_{29}H_{38}O_9$	548.2861 ^b	0.18	Tigloyl gomisin Q/Angeloyl gomisin Q	Р
11	11.24	$C_{22}H_{28}O_{6}$	389.1966	0.51	Gomisin J isomer	F
12	11.24	$C_{31}H_{36}O_9$	570.2708 ^b	0.88	Benzoyl isogomisin Q	Р
13	11.37	$C_{29}H_{38}O_9$	548.2865 ^b	0.91	Tigloyl gomisin Q isomer/Angeloyl gomisin Q	P, F
					isomer	
14	11.80	$C_{23}H_{30}O_{6}$	403.2118	-0.74	(-) Gomisin K ₁	F
15	11.95	$C_{23}H_{30}O_{6}$	403.2117	-0.99	(+) Gomisin K ₂	F
16	12.04	$C_{28}H_{34}O_9$	532.2548 ^b	0.19	Schisantherin B	P, U
17	12.20	$C_{23}H_{30}O_{6}$	403.2120	-0.25	(-) Gomisin K ₁ isomer/(+) Gomisin K ₂ isomer	F
18	12.26	$C_{24}H_{32}O_{6}$	554.2388 ^b	-0.36	Schisantherin A ^{<i>a</i>}	P, U
19	12.40	$C_{28}H_{34}O_9$	532.2542 ^b	-0.94	Schisantherin B isomer	P, F
20	12.85	$C_{23}H_{30}O_{6}$	403.2118	-0.74	Schisanhenol	U
21	13.50	$C_{28}H_{34}O_9$	515.2286	0.97	Gomisin E	F
22	14.62	$C_{24}H_{32}O_{6}$	417.2281	0.96	Schisandrin A ^{<i>a</i>}	P, F
23	15.16	$C_{23}H_{28}O_{6}$	401.1965	0.25	Gomisin N	U
24	15.31	$C_{23}H_{28}O_{6}$	401.1964	0	Schisandrin B ^{<i>a</i>}	P, F
Protot	type tanshi	nones				
25	5.84	$C_{18}H_{16}O_5$	313.1076	0	Tanshindiol B/Tanshindiol C	P, F
26	7.36	$C_{19}H_{20}O_4$	313.1438	-0.64	1,2,6,7,8,9-Hexahydro-1,6,6-trimethyl-3,11-	P, F
					dioxanaphth[2,1-e]azulene-10,12-dione/isomer	
27	7.80	$C_{19}H_{20}O_4$	313.1437	-0.96	1β-Hydroxy cryptotanshinone	P, F
28	8.62	$C_{18}H_{14}O_4$	295.0969	-0.34	1,2-Dihydro-1,6-dimethylfuro[3,2-c]naphth[2,1-	P, F
					e]oxepin-10,12-dione	
29	8.77	$C_{19}H_{18}O_4$	311.1280	-0.96	6,7,8,9-Tetrahydro-1,6,6-trimethylfuro[3,2-	P, F
					c]naphth[2,1-e]exepine-10,12-dione	
30	8.92	$C_{19}H_{18}O_4$	311.1281	-0.64	6,7,8,9-Tetrahydro-1,6,6-trimethylfuro[3,2-	P, F
					c]naphth[2,1-e]exepine-10,12-dione isomer	
31	9.02	$C_{19}H_{18}O_4$	311.1286	0.96	1-Oxo cryptotanshinone	P, F
32	9.10	$C_{19}H_{18}O_4$	311.1279	-1.29	Tanshinone II B	P, F

 Table S1 The prototype compounds detected in rat biofluids.

33	9.20	$C_{19}H_{18}O_4$	311.1281	-0.64	Hydroxytanshinone II A/3α-Hydroxy	P, F
					tanshinone II A	
34	9.60	$C_{18}H_{16}O_4$	297.1128	0.34	Tanshinone VI	P, F
35	10.40	$C_{18}H_{14}O_3$	279.1025	1.43	1,2-Dihydro-tanshinquinone I /15,16- Dihydrotanshinone	P, F
36	10.85	$C_{18}H_{16}O_3$	281.1174	-1.42	Danshenxinkun B	P , F
37	11.22	$C_{20}H_{18}O_5$	339.1231	-0.25	Methyl tanshinonate	P , F
38	12.32	$C_{18}H_{12}O_3$	277.0860	-1.8	Tanshinone I ^{<i>a</i>}	P , F
39	12.45	$C_{19}H_{20}O_3$	297.1489	-0.67	Cryptotanshinone ^a	P , F
40	13.83	$C_{19}H_{16}O_3$	293.1180	0.68	Unknown	P , F
41	14.72	$C_{19}H_{18}O_3$	295.1336	0.68	Tanshinone II A ^{<i>a</i>}	P , F
Proto	type ginse	nosides				
42	4.06	$C_{54}H_{92}O_{23}$	1107.5926	-2.26	Unknown	Р
43	4.18	$C_{48}H_{82}O_{19}$	961.5382	1.04	Re ₃ ^{<i>a</i>}	Р
44	4.21	$C_{54}H_{92}O_{23}$	1107.5961	0.90	Unknown	Р
45	4.36	$C_{47}H_{80}O_{18}$	931.5275	0.97	Re ₄	Р
46	4.40	$C_{48}H_{82}O_{19}$	961.5358	-1.46	20-Gluco-ginsenoside Rf ^{<i>a</i>}	Р
47	4.50	$C_{47}H_{80}O_{18}$	931.5262	-0.43	Notoginsenoside R ₁ isomer	Р
48	4.53	$C_{48}H_{82}O_{19}$	961.5360	-1.25	Re ₁	Р
49	4.58	$C_{47}H_{80}O_{18}$	931.5275	0.97	Notoginsenoside R ₁ ^{<i>a</i>}	Р
50	4.63	$C_{48}H_{82}O_{19}$	961.5380	0.83	Re ₂	Р
51	4.71	$C_{54}H_{92}O_{23}$	1107.5954	0.27	Unknown	Р
52	4.90	$C_{48}H_{82}O_{18}$	945.5433	1.06	Re ^{<i>a</i>}	P, U, F
53	4.93	$C_{42}H_{72}O_{14}$	799.4863	2.38	Rg ₁ ^{<i>a</i>}	P, U, F
54	5.30	$C_{54}H_{92}O_{24}$	1123.5864	-3.20	Koryoginsenoside R ₂ isomer	P, F
55	5.38	$C_{53}H_{90}O_{23}$	1093.5785	-0.91	Floralginsenoside P/isomer	P, F
56	5.46	$C_{54}H_{92}O_{24}$	1123.5867	-2.94	Koryoginsenoside R ₂	F
57	5.60	$C_{54}H_{92}O_{24}$	1123.5865	-3.12	Koryoginsenoside R ₂ isomer	F
58	5.63	$C_{53}H_{90}O_{23}$	1093.5769	-2.38	Floralginsenoside P/isomer	P, F
59	5.75	$C_{41}H_{70}O_{13}$	815.4806 ^c	1.59	Ginsenoside F ₃ /Ginsenoside F ₅	Р
60	5.78	$C_{53}H_{90}O_{23}$	1093.5776	-1.74	Floralginsenoside P/isomer	P, F
61	5.90	$C_{53}H_{90}O_{23}$	1093.5770	-2.29	Floralginsenoside P/isomer	Р
62	5.91	$C_{48}H_{82}O_{19}$	961.5382	1.04	Notoginsenoside N isomer	P, F
63	6.10	$C_{48}H_{82}O_{19}$	961.5367	-0.52	Notoginsenoside N	P, U, F
64	6.20	$C_{48}H_{82}O_{19}$	961.5380	0.83	Vinaginsenoside R ₄	P, U, F
65	6.26	$C_{60}H_{102}O_{28}$	1269.6467	-0.95	Unknown	F
66	6.50	$C_{60}H_{102}O_{28}$	1269.6459	-1.58	Unknown	F
67	6.63	$C_{42}H_{72}O_{14}$	799.4857	1.63	Rfisomer	Р
68	6.78	$C_{42}H_{72}O_{14}$	799.4866	2.75	$\mathrm{R}\mathrm{f}^{a}$	P, U, F
69	6.90	$C_{60}H_{102}O_{28}$	1269.6444	-2.76	Unknown	F
70	6.93	$C_{41}H_{70}O_{13}$	769.4767	3.77	Notoginsenoside R ₂ ^{<i>a</i>}	Р
71	6.97	$C_{58}H_{98}O_{26}$	1209.6230	-3.14	Ra ₂ ^a	Р
72	7.00	$C_{59}H_{100}O_{27}$	1239.6343	-2.50	Ra ₃ ^a	Р
73	7.06	$C_{54}H_{92}O_{23}$	1107.5965	1.26	Rb ₁ ^a	P, U, F

74	7.13	C ₄₈ H ₇₆ O ₁₉	955.4890	-1.36	Ro isomer	Р
75	7.24	$C_{42}H_{72}O_{13}$	783.4927	4.08	$\operatorname{Rg}_2{}^a$	P, U, F
76	7.27	C ₅₈ H ₉₈ O ₂₆	1209.6232	-2.98	Ra ₁ ^a	Р
77	7.30	$C_{53}H_{90}O_{22}$	1077.5852	0.65	Rc ^{<i>a</i>}	P, U, F
78	7.33	$C_{42}H_{72}O_{13}$	783.4925	3.83	20(R)-Rg ₂ ^{<i>a</i>}	P, U, F
79	7.33	C ₄₈ H ₇₆ O ₁₉	955.4921	1.88	Ro ^{<i>a</i>}	P, U, F
80	7.38	C ₃₆ H ₆₂ O ₉	637.4326	1.57	Rh ₁ ^a	P, U, F
81	7.50	$C_{48}H_{76}O_{19}$	955.4874	-3.04	Ro isomer	P, U, F
82	7.53	$C_{53}H_{90}O_{22}$	1077.5847	0.19	Rb ₂ ^a	P, U, F
83	7.60	$C_{53}H_{90}O_{22}$	1077.5841	-0.37	Rb ₃ ^a	P, U, F
84	7.78	$C_{56}H_{94}O_{24}$	1149.6035	-1.91	Quinquenoside R ₁ ^{<i>a</i>}	P, U, F
85	7.78	$C_{54}H_{92}O_{23}$	1107.5950	-0.09	Rb ₁ isomer	U, F
86	7.78	$C_{47}H_{74}O_{18}$	925.4803	0.65	Pseudo-ginsenoside-RT ₁ /Chikusetsusaponin IV	U, F
87	8.03	$C_{55}H_{92}O_{23}$	1119.5946	-0.45	Rs ₂ ^a	Р
88	8.10	$C_{48}H_{82}O_{18}$	945.5447	2.54	Rd ^a	P, U, F
89	8.16	$C_{51}H_{84}O_{21}$	1031.5428	0.10	Malonyl-ginsenoside Rd	F
90	8.18	$C_{56}H_{94}O_{24}$	1149.6034	-2.00	Quinquenoside R ₁ isomer	U
91	8.33	$C_{44}H_{74}O_{14}$	825.5020	2.42	Acetyl-Rg ₂	U, F
92	8.45	$C_{48}H_{82}O_{18}$	945.5430	0.74	Rd isomer	P, U, F
93	8.50	$C_{50}H_{84}O_{19}$	987.5543	1.42	Acetyl-Rd/isomer	U, F
94	8.56	$C_{49}H_{78}O_{19}$	1015.5110 ^c	-0.39	Ginsenoside Ro methyl ester ^a	Р
95	8.66	$C_{48}H_{82}O_{18}$	945.5415	-0.85	Gypenoside X VII	U, F
96	8.75	$C_{47}H_{80}O_{17}$	915.5316	-0.11	Vinaginsenoside R ₁₆	P, U, F
97	8.81	$C_{50}H_{84}O_{19}$	987.5555	2.63	Pseudo-ginsenoside RC ₁	U, F
98	8.86	$C_{47}H_{80}O_{17}$	915.5326	0.98	Gypenoside IX	U, F
99	8.96	$C_{47}H_{80}O_{17}$	961.5372 ^c	0	Notoginsenoside Fe	P, U, F
100	9.11	$C_{50}H_{84}O_{19}$	987.5536	0.71	Acetyl-gypenoside X VII	U, F
101	9.18	$C_{50}H_{84}O_{19}$	987.5531	0.20	Acetyl-gypenoside X VII isomer	U, F
102	9.46	$C_{47}H_{74}O_{18}$	925.4829	3.46	Pseudo-ginsenoside-RT ₁	Р
					isomer/Chikusetsusaponin IV isomer	
103	9.51	$C_{42}H_{66}O_{14}$	793.4404	3.78	Chikusetsusaponin IVa ^a	P, U, F
104	9.63	$C_{42}H_{72}O_{13}$	783.4926	3.96	Ginsenoside F ₂	P, U, F
105	10.09	$C_{42}H_{72}O_{13}$	783.4895	0	Rg ₃ ^a	P, U, F
106	10.16	$C_{42}H_{72}O_{13}$	783.4920	3.19	(20 <i>R</i>)-Rg ₃ ^{<i>a</i>}	P, U, F
107	11.12	$C_{44}H_{74}O_{14}$	871.5062 ^c	0.80	Acetyl-(S/R)-Rg ₃ /isomer	U, F
108	11.32	$C_{44}H_{74}O_{14}$	871.5063 ^c	0.92	Acetyl-(S/R)-Rg ₃ /isomer	U, F
109	11.90	$C_{65}H_{100}O_{21}$	1215.6633	-3.78	Polyacetyleneginsenoside-Ro/isomer	U, F
110	12.12	$C_{65}H_{100}O_{21}$	1215.6639	-3.29	Polyacetyleneginsenoside-Ro/isomer	U, F
111	13.35	$C_{36}H_{62}O_8$	667.4445 ^c	3.60	Rh ₂ ^a	U, F
112	13.52	$C_{36}H_{62}O_8$	667.4443 ^c	3.30	20(R)-Rh ₂ ^{<i>a</i>}	U, F
Prototy	pe flavoi	noids				
113	2.99	$C_{21}H_{20}O_{10}$	433.1147	2.77	Vitexin ^{<i>a</i>}	U
114	5.36	$C_{16}H_{12}O_5$	285.0749	-4.91	Calycosin	U, F
Prototy	pe lactor	nes				

115	7.33	$C_{12}H_{12}O_2$	189.0911	-2.64	3-Butylidenephthalide	P, U, F
116	14.41	$C_{12}H_{12}O_3$	205.0861	-1.95	Senkyunolide B/C/E	P, U, F
Protot	type pheno	licacids and tr	riterpenoid ac	id		
117	4.10	$C_{26}H_{22}O_{10}$	493.1151	3.24	Salvianolic acid A	U, F
118	4.45	$C_{36}H_{30}O_{16}$	717.1466	1.39	Salvianolic acid B	U, F
119	11.72	$C_{30}H_{48}O_3$	455.3529	0.88	Ursolic acid/Oleanlic acid	U, F
Protot	type astrag	alus saponins				
120	6.66	$C_{41}H_{70}O_{14}$	785.4726	4.96	Cyclocanthoside E	U, F
121	7.41	$C_{47}H_{78}O_{19}$	991.5133 ^c	1.92	Astragaloside V/Astragaloside	U, F
					VI/AstragalosideVII	
122	7.88	$C_{41}H_{68}O_{14}$	829.4621 ^c	4.22	Astragaloside IV ^{<i>a</i>}	P, U, F

a: The compounds were identified by comparison with the reference standards; *b*: $[M+NH_4]^+$; *c*: $[M+HCOO]^-$.

No.	t _R (min)	Molecular formula	Measured value (m/z) $[M+H]^+$	Diff (ppm)	Product ions	Compound name	Source
Lignan	s-related r	netabolites					
M1	5.33	C ₂₂ H ₂₆ O ₈	419.1705	-0.23	401.1697[M+H-H ₂ O] ⁺ , 386.1470[M+H-H ₂ O-CH ₃] ⁺ , 359.1595[M+H-H ₂ O-C ₃ H ₆] ⁺ , 344.1353[M+H-H ₂ O-C ₃ H ₆ -CH ₃] ⁺ , 331.1283[M+H-H ₂ O-C ₃ H ₆ -CO] ⁺ , 316.1050[M+H-H ₂ O-C ₃ H ₆ -CO-CH ₃] ⁺	Schisandrin A 2CH ₂ +demmet hylation to carboxylic acid	P, U
M2	5.37	C ₂₂ H ₂₆ O ₈	419.1697	0.6	$\begin{array}{c} 401.1570[M+H-H_2O]^+,\\ 386.1314[M+H-H_2O-CH_3]^+,\\ 359.1480[M+H-H_2O-C_3H_6]^+,\\ 355.1138[M+H-H_2O-CH_3-OCH_3]^+,\\ 331.1166[M+H-H_2O-C_3H_6-CO]^+,\\ 316.0931[M+H-H_2O-C_3H_6-CO-CH_3]^+,\\ 303.0851[M+H-H_2O-C_3H_6-CO-C_2H_4]^+\\ \end{array}$	Schisandrin A loss of 2CH ₂ +demmet hylation to carboxylic acid	P, F
M3	5.57	C ₂₃ H ₃₀ O ₈	435.2017	-0.46	417.1994[M+H-H ₂ O] ⁺ , 399.1784[M+H-2H ₂ O] ⁺ , 386.1680[M+H-H ₂ O-OCH ₃] ⁺ , 355.1805[M+H-H ₂ O-2OCH ₃] ⁺ , 327.1198[M+H-H ₂ O-2OCH ₃ -C ₂ H ₄] ⁺	Schisandrin A loss of CH ₂ +di- oxidation	Р
M4	5.73	C ₂₃ H ₂₈ O ₇	417.1912	-0.72	399.1909[M+H-H ₂ O] ⁺ , 386.1819[M+H-OCH ₃] ⁺ , 368.1697[M+H-H ₂ O-OCH ₃] ⁺ , 359.1581[M+H-H ₂ O-C ₂ H ₄ O] ⁺ , 344.1361[M+H-H ₂ O-C ₂ H ₄ O-CH ₃] ⁺ , 328.1391[M+H-H ₂ O-C ₂ H ₄ O-OCH ₃] ⁺	Schisandrin B oxidation	P, U
M5	5.76	C ₂₃ H ₃₀ O ₈	435.2016	-0.69	417.1948[M+H-H ₂ O] ⁺ , 399.1678[M+H-2H ₂ O] ⁺ , 386.1643[M+H-H ₂ O-OCH ₃] ⁺ , 355.1133[M+H-H ₂ O-2OCH ₃] ⁺ , 327.1200[M+H-H ₂ O-2OCH ₃ -C ₂ H ₄] ⁺	Schisandrin A loss of CH ₂ +di- oxidation	Р
M6	6.12	C ₂₂ H ₂₆ O ₈	419.1706	0	$401.1556[M+H-H_2O]^+,$ $388.1477[M+H-OCH_3]^+,$ $345.1413[M+H-H_2O-C_4H_8]^+,$ $327.1321[M+H-2H_2O-C_4H_8]^+,$ $296.1146[M+H-2H_2O-C_4H_8-OCH_3]^+,$ $281.0930[M+H-2H_2O-C_4H_8-OCH_3-CH_3]^+$	Schisandrin B loss of CH ₂ +di- oxidation	P, U
M7	6.15	$C_{22}H_{26}O_8$	419.1697	0.6	401.1572[M+H-H ₂ O] ⁺ ,	Schisandrin A	P, F

 Table S2 The metabolites detected in rat biofluids.

					386.1462[M+H-H ₂ O-CH ₃] ⁺ ,	loss of	
					359.1480[M+H-H ₂ O-C ₃ H ₆] ⁺ ,	2CH ₂ +demmet	
					355.1262[M+H-H ₂ O-CH ₃ -OCH ₃] ⁺ ,	hylation to	
					$331.1167[M+H-H_2O-C_3H_6-C_2H_4]^+,$	carboxylic acid	
					316.0944[M+H-H ₂ O-C ₃ H ₆ -C ₂ H ₄ -		
					$CH_{3}]^{+}$		
M8	6.17	$C_{23}H_{28}O_7$	417.1915	0.48	399.1909[M+H-H ₂ O] ⁺ ,	Schisandrin B	P, F
					386.1746[M+H-OCH ₃] ⁺ ,	oxidation	
					368.1697[M+H-H ₂ O-OCH ₃] ⁺ ,		
					344.1361[M+H-H ₂ O-OCH ₃ -C ₃ H ₆] ⁺		
M9	6.19	C23H30O8	435.2017	-0.46	417.1915[M+H-H ₂ O] ⁺ ,	Schisandrin A	P, U
					402.1791[M+H-H ₂ O-CH ₃] ⁺ ,	loss of CH ₂ +di-	
					399.1848[M+H-2H ₂ O] ⁺ ,	oxidation	
					386.1784[M+H-H ₂ O-OCH ₃] ⁺ ,		
					368.1632[M+H-2H ₂ O-OCH ₃] ⁺ ,		
					344.1346[M+H-H ₂ O-OCH ₃ -C ₃ H ₆] ⁺		
M10	6.32	$C_{23}H_{28}O_7$	417.1911	-0.48	399.1923[M+H-H ₂ O] ⁺ ,	Schisandrin B	P, U
					386.1743[M+H-OCH ₃] ⁺ ,	oxidation	
					368.1690[M+H-H ₂ O-OCH ₃] ⁺ ,		
					344.1318[M+H-H ₂ O-OCH ₃ -C ₃ H ₆] ⁺		
M11	6.45	$C_{23}H_{28}O_8$	433.1863	0.23	415.1829[M+H-H ₂ O] ⁺ ,	Schisandrin A	P, U
					387.1893[M+H-HCOOH] ⁺ ,	ethyl to	
					384.1637[M+H-H ₂ O-OCH ₃] ⁺ ,	carboxylic acid	
					369.1428[M+H-H ₂ O-OCH ₃ -CH ₃] ⁺ ,	-	
					345.1425[M+H-H ₂ O-CO-C ₃ H ₆] ⁺ ,		
					330.1213[M+H-H ₂ O-CO-C ₃ H ₆ -CH ₃] ⁺ ,		
					317.1127[M+H-H ₂ O-CO-C ₃ H ₆ -] ⁺		
M12	6.50	$C_{23}H_{28}O_7$	417.1909	-0.96	399.1919[M+H-H ₂ O] ⁺ ,	Schisandrin B	P, U
					386.1529[M+H-OCH ₃] ⁺ ,	oxidation	
					368.1657[M+H-H ₂ O-OCH ₃] ⁺ ,		
					359.1538[M+H-H ₂ O-C ₂ H ₄ O] ⁺ ,		
					344.1331[M+H-H ₂ O-C ₂ H ₄ O-CH ₃] ⁺ ,		
					328.1385[M+H-H ₂ O-C ₂ H ₄ O-OCH ₃] ⁺		
M13	7.36	$C_{23}H_{28}O_{6}$	401.1963	-0.25	386.1890[M+H-CH ₃] ⁺ ,	Schisandrin A	Р
					371.1744[M+H-2CH ₃] ⁺ ,	loss of	
					355.1496[M+H-CH ₃ -OCH ₃] ⁺ ,	OCH ₂ +carbony	
					337.1421[M+H-CH ₃ -OCH ₃ -H ₂ O] ⁺	l formation	
M14	7.61	$C_{24}H_{30}O_8$	447.2023	0.89	429.2250[M+H-H ₂ O] ⁺ ,	Schisandrin A	Р
					401.1819[M+H-H ₂ O-CO] ⁺ ,	demethylation	
					386.1743[M+H-H ₂ O-CO-CH ₃] ⁺ ,	to carboxylic	
					370.1819[M+H-H ₂ O-CO-OCH ₃] ⁺ ,	acid	
					356.1636[M+H-H ₂ O-CO-CH ₃ -OCH ₃] ⁺		
M15	7.66	$C_{23}H_{28}O_{6}$	401.1964	0	386.1891[M+H-CH ₃] ⁺ ,	Schisandrin A	Р
					371.1732[M+H-2CH ₃] ⁺ ,	loss of	

					355.1538[M+H-CH ₃ -OCH ₃] ⁺ ,	OCH ₂ +carbony	
					337.1420[M+H-CH ₃ -OCH ₃ -H ₂ O] ⁺	l formation	
M16	7.66	$C_{23}H_{30}O_7$	419.2071	0.24	401.1932[M+H-H ₂ O] ⁺ ,	Schisandrin A	Р
					386.1755[M+H-H ₂ O-CH ₃] ⁺ ,	loss of	
					370.1745[M+H-H ₂ O-OCH ₃] ⁺ ,	CH ₂ +oxidation	
					355.1537[M+H-H ₂ O-OCH ₃ -CH ₃] ⁺ ,		
					337.1396[M+H-2H ₂ O-OCH ₃ -CH ₃] ⁺		
M17	7.77	$C_{24}H_{30}O_7$	431.2064	-0.04	413.1981[M+H-H ₂ O] ⁺ ,	Schisandrin A	P, U
					400.1685[M+H-OCH ₃] ⁺ ,	loss of	
					382.1745[M+H-H ₂ O-OCH ₃] ⁺ ,	2CH ₂ +acetylati	
					373.1604[M+H-OCOCH ₂] ⁺ ,	on	
					358.1413[M+H-OCOCH ₂ -CH ₃] ⁺ ,		
					342.1423[M+H-OCOCH ₂ -OCH ₃] ⁺ ,		
					327.1211[M+H-OCOCH ₂ -OCH ₃ -		
					$\mathrm{CH}_3]^+$		
M18	7.82	$C_{23}H_{28}O_{6}$	401.1961	-0.75	386.1712[M+H-CH ₃] ⁺ ,	Schisandrin A	Р
					370.1862[M+H-OCH ₃] ⁺ ,	loss of	
					355.1657[M+H-CH ₃ -OCH ₃] ⁺ ,	OCH ₂ +carbony	
					337.1533[M+H-CH ₃ -OCH ₃ -H ₂ O] ⁺	l formation	
M19	7.84	$C_{23}H_{30}O_7$	419.2070	0	401.1930[M+H-H ₂ O] ⁺ ,	Schisandrin A	Р
					386.1700[M+H-H ₂ O-CH ₃] ⁺ ,	loss of	
					370.1745[M+H-H ₂ O-OCH ₃] ⁺ ,	CH ₂ +oxidation	
					355.1527[M+H-H ₂ O-OCH ₃ -CH ₃] ⁺ ,		
					$337.1390[M+H-2H_2O-OCH_3-CH_3]^+$		
M20	7.97	$C_{23}H_{28}O_6$	401.1960	-0.98	386.1770[M+H-CH ₃] ⁺ ,	Schisandrin A	Р
					371.1848[M+H-2CH ₃] ⁺ ,	loss of	
					355.1563[M+H-CH ₃ -OCH ₃] ⁺ ,	OCH ₂ +carbony	
					$337.1556[M+H-CH_3-OCH_3-H_2O]^+$	l formation	
M21	7.99	$C_{23}H_{30}O_7$	419.2070	0	401.1930[M+H-H ₂ O] ⁺ ,	Schisandrin A	Р
					386.1755[M+H-H ₂ O-CH ₃] ⁺ ,	loss of	
					370.1776[M+H-H ₂ O-OCH ₃] ⁺ ,	CH ₂ +oxidation	
					355.1572[M+H-CH ₃ -H ₂ O-OCH ₃] ⁺ ,		
					$337.1426[M+H-2H_2O-OCH_3-CH_3]^+$		
M22	8.11	$C_{23}H_{28}O_6$	401.1963	-0.25	386.1710[M+H-CH ₃] ⁺ ,	Schisandrin A	Р
					370.1749[M+H-OCH ₃] ⁺ ,	loss of	
					355.1544[M+H-CH ₃ -OCH ₃] ⁺ ,	OCH ₂ +ketone	
					337.1534[M+H-CH ₃ -OCH ₃ -H ₂ O] ⁺ ,	formation	
					$332.1256[M+H-CH_3-C_4H_6]^+$		
M23	8.24	$C_{23}H_{28}O_6$	401.1960	-0.98	386.1687[M+H-CH ₃] ⁺ ,	Schisandrin A	Р
					370.1743[M+H-OCH ₃] ⁺ ,	loss of	
					355.1511[M+H-CH ₃ -OCH ₃] ⁺ ,	OCH ₂ +ketone	
					337.1530[M+H-CH ₃ -OCH ₃ -H ₂ O] ⁺ ,	formation	
					$332.1250[M+H-CH_3-C_4H_6]^+$		
M24	8.28	$C_{23}H_{26}O_7$	415.1755	-0.48	397.1583[M+H-H ₂ O] ⁺ ,	Schisandrin B	Р

					385.1667[M+H-OCH ₂] ⁺ ,	methylene to	
					373.1772[M+H-C ₃ H ₆] ⁺ ,	Ketone	
					366.1451[M+H-H ₂ O-OCH ₃] ⁺ ,		
					342.1080[M+H-C ₃ H ₆ -OCH ₃] ⁺ ,		
					327.1198[M+H-C ₃ H ₆ -OCH ₃ -CH ₃] ⁺		
M25	8.41	$C_{23}H_{28}O_{6}$	401.1970	0.75	386.1680[M+H-CH ₃] ⁺ ,	Schisandrin A	Р
					370.1733[M+H-OCH ₃] ⁺ ,	loss of	
					355.1510[M+H-CH ₃ -OCH ₃] ⁺ ,	OCH ₂ +bis-	
					337.1533[M+H-CH ₃ -OCH ₃ -H ₂ O] ⁺ ,	ketone	
					332.1253[M+H-CH ₃ -C ₄ H ₆] ⁺	formation	
M26	8.51	$C_{23}H_{26}O_7$	415.1755	-0.48	397.1576[M+H-H ₂ O] ⁺ ,	Schisandrin B	Р
					385.1660[M+H-OCH ₂] ⁺ ,	methylene to	
					373.1771[M+H-C ₃ H ₆] ⁺ ,	Ketone	
					366.1455[M+H-H ₂ O-OCH ₃] ⁺ ,		
					342.1090[M+H-C ₃ H ₆ -OCH ₃] ⁺ ,		
					$327.1148[M+H-C_{3}H_{6}-OCH_{3}-CH_{3}]^{+}$		
M27	9.39	$C_{24}H_{30}O_{6}$	415.2121	0	400.1875[M+H-CH ₃] ⁺ ,	Schisandrin A	P, U
					384.1934[M+H-OCH ₃] ⁺ ,	loss of OCH ₂	
					369.1693[M+H-OCH ₃ -CH ₃] ⁺ ,	and	
					353.1727[M+H-2OCH ₃] ⁺ ,	CH ₂ +acetylatio	
					342.1461[M+H-COOCH ₂]+,	n	
					338.1505[M+H-2OCH ₃ -CH ₃] ⁺		
M28	9.60	$C_{22}H_{26}O_{6}$	387.1806	-0.52	372.1775[M+H-CH ₃] ⁺ ,	Schisandrin A	P, F
					356.1666[M+H-OCH ₃] ⁺ ,	loss of	
					341.1418[M+H-OCH ₃ -CH ₃] ⁺ ,	2OCH ₂ +demet	
					323.1406[M+H-OCH ₃ -CH ₃ -H ₂ O] ⁺ ,	hylation to	
					295.1440[M+H-OCH ₃ -CH ₃ -H ₂ O-CO] ⁺	carboxylic acid	
M29	9.68	$C_{27}H_{32}O_8$	485.2172	-0.54	454.1706[M+H-OCH ₃] ⁺ ,	Schisantherin B	P, U
					426.1600[M+H-OCH ₃ -C ₂ H ₄] ⁺ ,	-OCH ₂	
					$401.1560[M+H-C_6H_{12}]^+,$		
					$383.1464[M+H-C_6H_{12}-H_2O]^+,$		
					371.1483[M+H-C ₆ H ₁₂ -OCH ₂] ⁺ ,		
					$352.1295[M+H-C_6H_{12}-H_2O-OCH_3]^+,$		
					$341.1015[M+H-C_6H_{12}-2OCH_2]^+,$		
					337.1067[M+H-C ₆ H ₁₂ -H ₂ O-OCH ₃ -		
					CH ₃] ⁺ ,		
					$326.1128[M+H-C_6H_{12}-2OCH_2-CH_3]^+$		
M30	10.13	$C_{22}H_{28}O_6$	389.1961	-0.77	374.1799[M+H-CH ₃] ⁺ ,	Schisandrin A	P, F
					358.1874[M+H-OCH ₃] ⁺ ,	loss of $2CH_2$	
					343.1460[M+H-OCH ₃ -CH ₃] ⁺ ,		
					319.2025[M+H-C ₅ H ₁₀] ⁺ ,		
					288.1084[M+H-C ₅ H ₁₀ -OCH ₃] ⁺ ,		
					$273.0863[M + H - C_5H_{10} - OCH_3 - CH_3]^+$		
M31	10.23	$C_{24}H_{30}O_{6}$	415.2117	-0.69	400.1865[M+H-CH ₃] ⁺ ,	Schisandrin A	P, U

					384.1924[M+H-OCH ₃] ⁺ ,	loss of OCH ₂	
					369.1690[M+H-OCH ₃ -CH ₃] ⁺ ,	and	
					353.1737[M+H-2OCH ₃] ⁺ ,	CH ₂ +acetylatio	
					342.1456 [M+H-COOCH ₂] ⁺ ,	n	
					338.1500[M+H-2OCH ₃ -CH ₃] ⁺		
M32	10.80	$C_{23}H_{28}O_{6}$	401.1967	0.75	386.1713[M+H-CH ₃]+,	Schisandrin A	P, U
					370.1866[M+H-OCH ₃] ⁺ ,	loss of	
					355.1648[M+H-CH ₃ -OCH ₃] ⁺ ,	OCH ₂ +ketone	
					337.1537[M+H-CH ₃ -OCH ₃ -H ₂ O] ⁺ ,	formation	
					$332.1254[M+H-CH_3-C_4H_6]^+$		
M33	11.43	$C_{24}H_{30}O_7$	431.2067	-0.71	413.2003[M+H-H ₂ O] ⁺ ,	Schisandrin A	Р
					400.1863[M+H-OCH ₃] ⁺ ,	loss of	
					382.1785[M+H-H ₂ O-OCH ₃] ⁺ ,	2CH ₂ +acetylati	
					373.1614[M+H-OCOCH ₂] ⁺ ,	on	
					358.1437[M+H-OCOCH ₂ -CH ₃] ⁺ ,		
					342.1442[M+H-OCOCH ₂ -OCH ₃]+,		
					327.1222[M+H-OCOCH ₂ -OCH ₃ -		
					$CH_3]^+$		
M34	12.11	$C_{23}H_{26}O_7$	415.1752	-0.31	400.1735[M+H-CH ₃]+,	Schisandrin A	P, U
					385.1607[M+H-OCH ₂] ⁺ ,	loss of	
					371.1476[M+H-C ₃ H ₆] ⁺ ,	OCH ₂ +bis-	
					356.1259[M+H-C ₃ H ₆ -CH ₃] ⁺ ,	ketone	
					340.1301[M+H-C ₃ H ₆ -OCH ₃] ⁺ ,	formation	
					$325.1073[M+H-C_3H_6-OCH_3-CH_3]^+$		
M35	12.37	$C_{23}H_{26}O_7$	415.1755	-0.48	385.1759[M+H-OCH ₂] ⁺ ,	Schisandrin A	P, U
					371.1600[M+H-C ₃ H ₆] ⁺ ,	loss of	
					356.1359[M+H-C ₃ H ₆ -CH ₃] ⁺ ,	OCH ₂ +bis-	
					340.1410[M+H-C ₃ H ₆ -OCH ₃] ⁺ ,	ketone	
					$325.1177[M+H-C_3H_6-OCH_3-CH_3]^+$	formation	
M36	12.50	$C_{23}H_{26}O_7$	415.1755	-0.77	400.1765[M+H-CH ₃] ⁺ ,	Schisandrin A	P, U
					385.1632[M+H-OCH ₂] ⁺ ,	loss of	
					371.1480[M+H-C ₃ H ₆] ⁺ ,	OCH ₂ +bis-	
					356.1259[M+H-C ₃ H ₆ -CH ₃] ⁺ ,	ketone	
					340.1306[M+H-C ₃ H ₆ -OCH ₃] ⁺ ,	formation	
					$325.1066[M+H-C_3H_6-OCH_3-CH_3]^+$		
M37	12.94	$C_{23}H_{30}O_{6}$	403.2113	0.63	388.1873[M+H-CH ₃] ⁺ ,	Schisandrin A	Р
					372.1923[M+H-OCH ₃] ⁺ ,	loss of CH ₂	
					357.1673[M+H-CH ₃ -OCH ₃] ⁺ ,		
					302.1137[M+H-OCH ₃ -C ₅ H ₁₀] ⁺ ,		
					287.0890[M+H-OCH ₃ -C ₅ H ₁₀ -CH ₃] ⁺ ,		
					$271.0953[M {+} H {-} 20CH_3 {-} C_5H_{10}]^+$		
Tashinor	ne-related	d metabolites					
M38	6.34	$C_{19}H_{20}O_{6}$	345.1335	-0.87	327.1267[M+H-H ₂ O] ⁺ ,	Tri-	P, F
					309.1068[M+H-2H ₂ O] ⁺ ,	hydroxylation	

					299.1256[M+H-H ₂ O-CO] ⁺ ,	cryptotanshino	
					281.1166[M+H-2H ₂ O-CO] ⁺ ,	ne	
					263.1067[M+H-3H ₂ O-CO] ⁺ ,		
					235.1113[M+H-3H ₂ O-2CO] ⁺		
M39	6.43	$C_{18}H_{12}O_4$	293.0816	0.68	278.1529[M+H-CH ₃] ⁺ ,	Hydroxylation	P, F
					265.1137[M+H-CO] ⁺ ,	tanshinone I	
					234.0703[M+H-CO-CH ₂ OH] ⁺ ,		
					$219.0817[M+H-CO-CH_2OH-CH_3]^+$		
M40	6.46	$C_{19}H_{20}O_4$	313.1438	-0.64	285.1472[M+H-CO] ⁺ ,	Hydroxylation	P, F
					267.1397[M+H-CO-H ₂ O] ⁺ ,	cryptotanshino	
					254.1301[M+H-CO-CH ₂ OH] ⁺ ,	ne	
					$252.1150[M+H-CO-H_2O-CH_3]^+$		
M41	6.55	$C_{19}H_{20}O_4$	313.1437	-0.96	285.1513[M+H-CO]+,	Hydroxylation	P, F
					267.1380[M+H-CO-H ₂ O] ⁺ ,	cryptotanshino	
					254.1293[M+H-CO-CH ₂ OH] ⁺ ,	ne	
					252.1143[M+H-CO-H ₂ O-CH ₃] ⁺		
M42	6.63	$C_{19}H_{20}O_4$	313.1438	-0.64	285.1460[M+H-CO] ⁺ ,	Hydroxylation	P, F
					267.1371[M+H-CO-H ₂ O] ⁺ ,	cryptotanshino	
					254.1281[M+H-CO-CH ₂ OH] ⁺ ,	ne	
					$252.1147[M+H-CO-H_2O-CH_3]^+$		
M43	6.63	$C_{19}H_{20}O_5$	329.1387	-0.61	311.1268 [M+H-H ₂ O] ⁺ ,	Di-	P, F
					283.1328[M+H-H ₂ O-CO] ⁺ ,	hydroxylation	
					265.1239[M+H-2H ₂ O-CO] ⁺ ,	cryptotanshino	
					250.0988[M+H-2H ₂ O-CO-CH3] ⁺ ,	ne	
					237.1265 [M+H-2H ₂ O-2CO] ⁺		
M44	7.18	$C_{19}H_{18}O_5$	327.1232	0	309.1108[M+H-H ₂ O] ⁺ ,	Di-	P, F
					281.1167[M+H-H ₂ O-CO] ⁺ ,	hydroxylation	
					$250.0978[M+H-H_2O-CO-CH_2OH]^+$	tanshinone IIA	
M45	7.39	$C_{18}H_{12}O_4$	293.0807	-0.34	278.0876[M+H-CH ₃] ⁺ ,	Hydroxylation	P, F
					265.0784[M+H-CO] ⁺ ,	tanshinone I	
					234.0679[M+H-CO-CH ₂ OH] ⁺ ,		
					219.0801[M+H-CO-CH ₂ OH-CH ₃] ⁺		
M46	8.99	$C_{19}H_{20}O_5$	329.1382	-2.13	311.1270[M+H-H ₂ O] ⁺ ,	Di-	P, F
					283.1323[M+H-H ₂ O-CO] ⁺ ,	hydroxylation	
					265.1226[M+H-2H ₂ O-CO] ⁺ ,	cryptotanshino	
					250.0989[M+H-2H ₂ O-CO-CH ₃] ⁺ ,	ne	
					237.1245 [M+H-2H ₂ O-2CO] ⁺		
M47	9.34	$C_{19}H_{20}O_5$	329.1383	-2.13	311.1273[M+H-H ₂ O] ⁺ ,	Di-	P, F
					283.1320[M+H-H ₂ O-CO] ⁺ ,	hydroxylation	
					265.1229[M+H-2H ₂ O-CO] ⁺ ,	cryptotanshino	
					250.0998[M+H-2H ₂ O-CO-CH ₃] ⁺ ,	ne	
	o	a			237.1255 [M+H-2H ₂ O-2CO] ⁺		. –
M48	9.50	$C_{19}H_{20}O_4$	313.1439	-0.32	295.1437[M+H-H ₂ O] ⁺ ,	Hydroxylation	P, F
					277.1348[M+H-2H ₂ O] ⁺ ,	cryptotanshino	

						262.1104[M+H-2H ₂ O-CH ₃] ⁺ .	ne	
						249.1400[M+H-2H ₂ O-CO] ⁺		
M49	9.57	C10H18O5	327.1231	-0.31		309.1124[M+H-H ₂ O] ⁺ .	Hvdroxvl	P. F
		- 17 10 - 5				291.1021[M+H-2H ₂ O] ⁺ .	tashinone IIB	2
						281.1178[M+H-H ₂ O-CO] ⁺ ,		
					25	0.1091[M+H-H ₂ O-CO-CH ₂ OH] ⁺		
M50	10.30	$C_{19}H_{18}O_4$	311.1281	-0.64		283.1337[M+H-H ₂ O] ⁺ .	Hvdroxvlation	P.F
		- 17 10 - 4				265.1218[M+H-2H ₂ O] ⁺ ,	tanshinone II A	2
						250.0992[M+H-2H ₂ O-CH ₃] ⁺ .		
						237.1274[M+H-2H ₂ O-CO] ⁺ ,		
					2	22.1018[M+H-2H ₂ O-CO-CH ₃] ⁺		
M51	10.31	C19H20O5	329.1384	-2.13		311.1298[M+H-H ₂ O] ⁺ ,	Di-	P, F
		- 19 20 - 5				283.1324[M+H-H ₂ O-CO] ⁺ ,	hydroxylation	2
						265.1219[M+H-2H ₂ O-CO] ⁺ ,	cryptotanshino	
					2	50.0998[M+H-2H ₂ O-CO-CH ₃] ⁺ ,	ne	
						237.1268[M+H-2H ₂ O-2CO] ⁺	-	
M52	12.99	C ₁₉ H ₁₆ O ₃	293.1176	-0.68		278.0967[M+H-CH ₃] ⁺ ,	Dehydrogenati	P, F
		19 10 5				275.1138[M+H-H ₂ O] ⁺ ,	on	,
						263.0684[M+H-2CH ₃] ⁺ ,	tanshinone II A	
						260.0858[M+H-CH ₃ -H ₂ O] ⁺ .		
						247.1094[M+H-H ₂ O-CO] ⁺ .		
					,	232.0931[M+H-H ₂ O-CO-CH ₃] ⁺		
Ginsenos	sides-relat	ted metabolite	S					
M53	5.68	C54H92O24	1123.58	93	-0.62	961.5382[M-H-Glc] ⁻ ,	Monooxyg	P, U
						799.4846[M-H-2Glc] ⁻ ,	enated Rb ₁	
						637.4310[M-H-3Glc] ⁻ ,		
						475.3780[M-H-4Glc]		
M54	7.58	C ₃₆ H ₆₂ O ₉	683.4382	2 <i>a</i>	1.76	475.3817[M-H-Glc] ⁻	F ₁ /isomer	Р
M55	7.64	C54H92O23	1107.59	51	0	945.5405[M-H-Glc] ⁻ ,	Ra ₃ -Xyl	P, U, F
						783.4812[M-H-2Glc] ⁻ ,		
						621.4267[M-H-3Glc] ⁻ ,		
						459.3849[M-H-4Glc] ⁻		
M56	9.13	C48H82O18	945.543	8	1.59	783.4793 [M-H-Glc] ⁻ ,	Rd isomer	P, U, F
						621.4172[M-H-2Glc] ⁻ ,		
						459.3710[M-H-3Glc] ⁻		
M57	9.25	C48H82O18	945.543	3	1.06	783.4795 [M-H-Glc] ⁻ ,	Rd isomer	U, F
						621.4192[M-H-2Glc] ⁻ ,		
						459.3715[M-H-3Glc] ⁻		
M58	9.33	C ₃₆ H ₆₂ O ₉	683.438	6 <i>a</i>	2.34	475.3681[M-H-Glc] ⁻	F ₁ /isomer	P, U, F
M59	9.37	$C_{48}H_{82}O_{18}$	991.548	5 a	0.71	783.4799[M-H-Glc] ⁻ ,	Rd isomer	U, F
						621.4285[M-H-2Glc] ⁻ ,		
						459.3772[M-H-3Glc] ⁻		
M60	9.88	C42H66O14	4 793.438	31	0.88	613.3840[M-H-Glc] ⁻ ,	Ro-Glc	P, U, F
						569.3850[M-H-Glc-CO ₂ -H ₂ O] ⁻	,	

					551.3734[M-H-Glc-CO ₂ -2H ₂ O] ⁻ ,			
					455.3525[M-H-Glc-Glu A] ⁻			
M61	10.82	C ₃₆ H ₅₆ O ₉	631.3850	0.63	455.3584[M-H-Glu A] ⁻	Ro-2Glc	P, U, F	
M62	11.81	C ₃₆ H ₅₆ O ₉	631.3862	2.53	455.3571[M-H-Glu A] ⁻	Ro isomer-	U, F	
						2Glc		

a: Stands for [M+HCOO]⁻.

No.	Compound Name	Relative	Total
		Content	Content
		(%)	(%)
	In positive ion mode		
Lignan	S		
1	Gomisin D isomer	0.003	58.868
2	Schizandrol A	3.606	
3	Gomisin D	2.064	
4	Schizandrol A isomer	0.079	_
5	Gomisin J	0	
6	Gomisin J isomer	0	
7	Tigloyl gomisin Q/Angeloyl gomisin	0.008	
8	Kadsuranin/isomer	0	
9	Kadsuranin/isomer	0.444	
10	Tigloyl gomisin Q/Angeloyl gomisin Q	0.055	
11	Gomisin J isomer	0	
12	Benzoyl isogomisin Q	0.006	
13	Tigloyl gomisin Q isomer/Angeloyl gomisin Q isomer	0.039	
14	(-) Gomisin K ₁	0	
15	(+) Gomisin K ₂	0	
16	Schisantherin B	1.985	
17	(-) Gomisin K ₁ isomer/(+) Gomisin K ₂ isomer	0	
18	Schisantherin A	5.987	
19	Schisantherin B isomer	5.811	
20	Schisanhenol	0	
21	Gomisin E	0	
22	Schisandrin A	1.719	
23	Gomisin N	0	
24	Schisandrin B	0.046	
25	Tanshindiol B/Tanshindiol C	0.006	
26	1,2,6,7,8,9-Hexahydro-1,6,6-trimethyl-3,11-dioxanaphth[2,1-e]azulene-10,12-dione/isomer	0.008	
27	1β-Hydroxy cryptotanshinone	0.009	
28	1,2-Dihydro-1,6-dimethylfuro[3,2-c]naphth[2,1-e]oxepin-10,12-dione	0.011	
29	6,7,8,9-Tetrahydro-1,6,6-trimethylfuro[3,2-c]naphth[2,1-e]exepine-10,12-dione	0.033	
30	6,7,8,9-Tetrahydro-1,6,6-trimethylfuro[3,2-c]naphth[2,1-e]exepine-10,12-dione isomer	0.019	
31	1-Oxo cryptotanshinone	0.154	
32	Tanshinone II B	0.066	
33	Hydroxytanshinone II A/3α-Hydroxy tanshinone II A	0.080	1
M1	Schisandrin A	2.863	1
M2	Schisandrin A loss of 2CH ₂ +demmethylation to carboxylic acid	0.029	1
M3	Schisandrin A loss of CH ₂ +di-oxidation	0.327	1
M4	Schisandrin B oxidation	1.980	1

Table S3 The relative content of each compound in plasma.

M5	Schisandrin A loss of CH ₂ +di-oxidation	0.276	
M6	Schisandrin B loss of CH ₂ +di-oxidation	0.055	
M7	Schisandrin A loss of 2CH ₂ +demmethylation to carboxylic acid	5.156	
M8	Schisandrin B oxidation	0.176	
M9	Schisandrin A loss of CH ₂ +di-oxidation	0.032	
M10	Schisandrin B oxidation	0.859	
M11	Schisandrin A ethyl to carboxylic acid	2.420	-
M12	Schisandrin B oxidation	0.690	-
M13	Schisandrin A loss of OCH ₂ +carbonyl formation	0.457	-
M14	Schisandrin A demethylation to carboxylic acid	0.142	
M15	Schisandrin A loss of OCH ₂ +carbonyl formation	0.300	-
M16	Schisandrin A loss of CH ₂ +oxidation	0.262	-
M17	Schisandrin A loss of 2CH ₂ +acetylation	4.718	-
M18	Schisandrin A loss of OCH ₂ +carbonyl formation	1.983	
M19	Schisandrin A loss of CH ₂ +oxidation	0.540	
M20	Schisandrin A loss of OCH ₂ +carbonyl formation	0.549	
M21	Schisandrin A loss of CH ₂ +oxidation	0.451	
M22	Schisandrin A loss of OCH ₂ +ketone formation	0.207	
M23	Schisandrin A loss of OCH ₂ +ketone formation	0.109	
M24	Schisandrin B methylene to Ketone	0.031	1
M25	Schisandrin A loss of OCH ₂ +bis-ketone formation	0.874	1
M26	Schisandrin B methylene to Ketone	0.039	
M27	Schisandrin A loss of OCH ₂ and CH ₂ +acetylation	3.196	
M28	Schisandrin A loss of 2OCH ₂ +demethylation to carboxylic acid	0.055	
M29	Schisantherin B -OCH ₂	2.384	-
M30	Schisandrin A loss of 2CH ₂	0.040	-
M31	Schisandrin A loss of OCH ₂ and CH ₂ +acetylation	2.689	-
M32	Schisandrin A loss of OCH ₂ +ketone formation	0.059	-
M33	Schisandrin A loss of 2CH ₂ +acetylation	0.400	-
M34	Schisandrin A loss of OCH ₂ +bis-ketone formation	0.393	
M35	Schisandrin A loss of OCH ₂ +bis-ketone formation	0.384	
M36	Schisandrin A loss of OCH ₂ +bis-ketone formation	0.797	
M37	Schisandrin A loss of CH ₂	0.710	
Tanshi	nones		
34	Tanshinone VI	1.872	40.326
35	1,2-Dihydro-tanshinquinone I /15,16-Dihydrotanshinone	0.099	
36	Danshenxinkun B	0.004	
37	Methyl tanshinonate	0.006	
38	Tanshinone I	10.453	
39	Cryptotanshinone	7.119	
40	Unknown	0.004	
41	Tanshinone II A	4.231	
M38	Tri-hydroxylation cryptotanshinone	2.598	

M39	Hydroxylation tanshinone I	0.400	
M40	Hydroxylation cryptotanshinone	3.617	
M41	Hydroxylation cryptotanshinone	0.172	
M42	Hydroxylation cryptotanshinone	0.249	
M43	Di-hydroxylation cryptotanshinone	0.153	
M44	Di-hydroxylation tanshinone IIA	7.123	
M45	Hydroxylation tanshinone I	0.725	
M46	Di-hydroxylation cryptotanshinone	0.090	
M47	Di-hydroxylation cryptotanshinone	0.522	
M48	Hydroxylation cryptotanshinone	0.098	
M49	Hydroxyl tashinone IIB	0.433	
M50	Hydroxylation tanshinone II A	0.075	
M51	Di-hydroxylation cryptotanshinone	0.032	
M52	Dehydrogenation tanshinone II A	0.250	
Flavon	oids		
113	Vitexin	0	0
114	Calycosin	0	
Lacton	es		
115	3-Butylidenephthalide	0.469	0.806
116	Senkyunolide B/C/E	0.337	
	In negative ion mode		
Ginsen	osides		
42	Unknown	0.012	00 150
		0.012	99.139
43	Re ₃	0.012	99.139
43 44	Re ₃ Unknown	0.012 0.020 0.037	99.139
43 44 45	Re ₃ Unknown Re ₄	0.012 0.020 0.037 0.011	99.139
43 44 45 46	Re ₃ Unknown Re ₄ 20-Gluco-ginsenoside Rf	0.012 0.020 0.037 0.011 0.063	99.139
43 44 45 46 47	Re3 Unknown Re4 20-Gluco-ginsenoside Rf Notoginsenoside R1 isomer	0.012 0.020 0.037 0.011 0.063 0.031	99.139
43 44 45 46 47 48	Re ₃ Unknown Re ₄ 20-Gluco-ginsenoside Rf Notoginsenoside R1 isomer Re ₁	0.012 0.020 0.037 0.011 0.063 0.031 0.049	99.139
43 44 45 46 47 48 49	Re3 Unknown Re4 20-Gluco-ginsenoside Rf Notoginsenoside R1 isomer Re1 Notoginsenoside R1	0.012 0.020 0.037 0.011 0.063 0.031 0.049 0.052	99.139
43 44 45 46 47 48 49 50	Re3 Unknown Re4 20-Gluco-ginsenoside Rf Notoginsenoside R1 isomer Re1 Notoginsenoside R1 Re2	0.012 0.020 0.037 0.011 0.063 0.031 0.049 0.052 0.012	99.139
43 44 45 46 47 48 49 50 51	Re3 Unknown Re4 20-Gluco-ginsenoside Rf Notoginsenoside R1 isomer Re1 Notoginsenoside R1 Re2 Unknown	0.012 0.020 0.037 0.011 0.063 0.031 0.049 0.052 0.012	99.139
43 44 45 46 47 48 49 50 51 52	Re3 Unknown Re4 20-Gluco-ginsenoside Rf Notoginsenoside R1 isomer Re1 Notoginsenoside R1 Re2 Unknown Re	0.012 0.020 0.037 0.011 0.063 0.031 0.049 0.052 0.012 0.071 9.603	99.139
43 44 45 46 47 48 49 50 51 52 53	Re3 Unknown Re4 20-Gluco-ginsenoside Rf Notoginsenoside R1 isomer Re1 Notoginsenoside R1 Re2 Unknown Re Rg1	0.012 0.020 0.037 0.011 0.063 0.031 0.049 0.052 0.012 0.071 9.603 0.407	99.139
43 44 45 46 47 48 49 50 51 52 53 54	Re3 Unknown Re4 20-Gluco-ginsenoside Rf Notoginsenoside R1 isomer Re1 Notoginsenoside R1 Re2 Unknown Re Rg1 Koryoginsenoside R2 isomer	0.012 0.020 0.037 0.011 0.063 0.031 0.049 0.052 0.012 0.071 9.603 0.407 0.201	99.139
43 44 45 46 47 48 49 50 51 52 53 54 55	Re3 Unknown Re4 20-Gluco-ginsenoside Rf Notoginsenoside R1 isomer Re1 Notoginsenoside R1 Re2 Unknown Re Rg1 Koryoginsenoside R2 isomer Floralginsenoside P/isomer	0.012 0.020 0.037 0.011 0.063 0.031 0.049 0.052 0.012 0.071 9.603 0.407 0.036	99.139
43 44 45 46 47 48 49 50 51 52 53 54 55 56	Re3 Unknown Re4 20-Gluco-ginsenoside Rf Notoginsenoside R1 isomer Re1 Notoginsenoside R1 Re2 Unknown Re Rg1 Koryoginsenoside R2 isomer Floralginsenoside P/isomer Koryoginsenoside R2	0.012 0.020 0.037 0.011 0.063 0.031 0.049 0.052 0.012 0.071 9.603 0.407 0.201 0.036 0	99.139
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57	Re3 Unknown Re4 20-Gluco-ginsenoside Rf Notoginsenoside R1 isomer Re1 Notoginsenoside R1 Notoginsenoside R1 Re2 Unknown Re Rg1 Koryoginsenoside R2 isomer Floralginsenoside R2 Koryoginsenoside R2	0.012 0.020 0.037 0.011 0.063 0.031 0.049 0.052 0.012 0.071 9.603 0.407 0.036 0 0	99.139
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Re3 Unknown Re4 20-Gluco-ginsenoside Rf Notoginsenoside R1 isomer Re1 Notoginsenoside R1 Re2 Unknown Re Rg1 Koryoginsenoside R2 isomer Floralginsenoside R2 Koryoginsenoside R2 Koryoginsenoside R2 Floralginsenoside R2 Koryoginsenoside R3 Koryoginsenoside R4 Koryoginseno	0.012 0.020 0.037 0.011 0.063 0.031 0.049 0.052 0.012 0.071 9.603 0.407 0.201 0.036 0 0.090	99.139
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59	Re3 Unknown Re4 20-Gluco-ginsenoside Rf Notoginsenoside R1 isomer Re1 Notoginsenoside R1 Re2 Unknown Re Rg1 Koryoginsenoside R2 isomer Floralginsenoside P/isomer Koryoginsenoside R2 Koryoginsenoside R2 Koryoginsenoside R2 Koryoginsenoside R2 Koryoginsenoside R4 Somer Floralginsenoside R4 Somer Koryoginsenoside R5	0.012 0.020 0.037 0.011 0.063 0.031 0.049 0.052 0.012 0.071 9.603 0.407 0.036 0 0.036 0 0.090 0.030	99.139
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60	Re3 Unknown Re4 20-Gluco-ginsenoside Rf Notoginsenoside R1 isomer Re1 Notoginsenoside R1 Re2 Unknown Re Rg1 Koryoginsenoside R2 isomer Floralginsenoside P/isomer Koryoginsenoside R2 Koryoginsenoside R2 Floralginsenoside P/isomer Floralginsenoside P/isomer Ginsenoside F3/Ginsenoside F5 Floralginsenoside P/isomer	0.012 0.020 0.037 0.011 0.063 0.031 0.049 0.052 0.012 0.071 9.603 0.407 0.201 0.036 0 0.090 0.030 0.059	99.139
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61	Re3 Unknown Re4 20-Gluco-ginsenoside Rf Notoginsenoside R1 isomer Re1 Notoginsenoside R1 Re2 Unknown Re Rg1 Koryoginsenoside R2 isomer Floralginsenoside P/isomer Koryoginsenoside R2 Koryoginsenoside R5 Floralginsenoside P/isomer	0.012 0.020 0.037 0.011 0.063 0.031 0.049 0.052 0.012 0.071 9.603 0.407 0.201 0.036 0 0.090 0.030 0.059 0.021	99.139

63	Notoginsenoside N	0.340
64	Vinaginsenoside R ₄	0.212
65	Unknown	0
66	Unknown	0
67	Rf isomer	0.048
68	Rf	2.719
69	Unknown	0
70	Notoginsenoside R ₂	0.096
71	Ra ₂	0.062
72	Ra ₃	0.239
73	Rb ₁	20.768
74	Ro isomer	0.069
75	Rg ₂	3.806
76	Ra ₁	0.082
77	Rc	11.740
78	20(R)-Rg ₂	0.552
79	Ro	0.818
80	Rh ₁	0.070
81	Ro isomer	0.635
82	Rb ₂	1.301
83	Rb ₃	0.807
84	Quinquenoside R ₁	0.133
85	Rb ₁ isomer	0
86	Pseudo-ginsenoside-RT ₁ /Chikusetsusaponin IV	0
87	Rs ₂	0.073
88	Rd	18.090
89	Malonyl-ginsenoside Rd	0
90	Quinquenoside R ₁ isomer	0
91	Acetyl-Rg ₂	0
92	Rd isomer	1.542
93	Acetyl-Rd/isomer	0
94	Ginsenoside Ro methyl ester	0.044
95	Gypenoside X VII	0
96	Vinaginsenoside R ₁₆	0.057
97	Pseudo-ginsenoside RC ₁	0
98	Gypenoside IX	0
99	Notoginsenoside Fe	0.116
100	Acetyl-gypenoside X VII	0
101	Acetyl-gypenoside X VII isomer	0
102	Pseudo-ginsenoside-RT1 isomer/Chikusetsusaponin IV isomer	0.743
103	Chikusetsusaponin IVa	6.131
104	Ginsenoside F ₂	0.638
105	Rg ₃	6.452

106	(20 <i>R</i>)-Rg ₃	2.062	
107	Acetyl-(S/R)-Rg ₃ /isomer	0	
108	Acetyl-(S/R)-Rg ₃ /isomer	0]
109	Polyacetyleneginsenoside-Ro/isomer	0	
110	Polyacetyleneginsenoside-Ro/isomer	0	
111	Rh ₂	0	
112	20(<i>R</i>)-Rh ₂	0]
M53	Monooxygenated Rb ₁	0.136]
M54	F ₁ /isomer	0.044	
M55	Ra ₃ -Xyl	2.688	
M56	Rd isomer	0.081]
M57	Rd isomer	0	
M58	F ₁ /isomer	0.108]
M59	Rd isomer	0	
M60	Ro-Glc	1.471	
M61	Ro-2Glc	2.913	
M62	Ro isomer-2Glc	0	
Phenol	icacids and triterpenoid acid		
117	Salvianolic acid A	0	0
118	Salvianolic acid B	0	
119	Ursolic acid/Oleanlic acid	0	
Astragalus saponins			
120	Cyclocanthoside E	0	0.841
121	Astragaloside V/Astragaloside VI/Astragaloside VII	0	
122	Astragaloside IV	0.841	