Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Highly Photostable Luminescent Open-shell (3,5-Dihalo-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl Radicals: Significant Effects of Halogen Atoms on Their Photophysical and Photochemical Properties

Yohei Hattori, Tetsuro Kusamoto* and Hiroshi Nishihara*

Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Contents

Materials and methods	S2
Table S1 Crystallographic data	S 6
Table S2 Selected angles in the crystal of X ₂ PyBTM	S 7
Table S3 Calculated angles using UB3LYP/6-31G(d)	S 7
Table S4 Calculated angles using UM06/6-31G(d)	S 7
Figure S1 ESR spectra	S 8
Figure S2 Cyclic voltammograms	S9
Figure S3 Emission spectra at 77K in EPA matrix	S10
Figure S4 Photostability	S11
Figure S5 Absorption change by protonation	S12
Figure S6 Emission change by protonation	S12
Figure S7 Reduction potential change by protonation	S13
Cartesian coordinates of all the optimized geometries by DFT calculations	S 14
Abstracted results of TDDFT calculations	S18

Materials

3,5-Dibromo-4-pyridinecarboxaldehyde, 3,5-difluoro-4-formylpyridine, ^tBuOK in THF (1M solution), and 4-hydroxy-TEMPO were purchased from Sigma-Aldrich Co.LLC., 1,3,5-trichlorobenzene was from Wako Pure Chemical Industries, Ltd., trifluoromethanesulfonic acid was from Tokyo Chemical Industry Co., Ltd.

Synthesis of (3,5-dibromo-4-pyridyl)bis(2,4,6-trichlorophenyl)methane (\alpha H-Br_2PyBTM)

 αH -Br₂PyBTM was synthesized by similar method to that of αH -PyBTM¹ utilizing superacid-catalyzed condensation of pyridine carboxaldehyde with arenes.² Under а nitrogen atmosphere, 3,5-dibromo-4-pyridinecarboxaldehyde (532 mg, 2.01 mmol, 1 eq.) and 1,3,5-trichlorobenzene (3.64 g, 20.1 mmol, 10 eq.) was heated to 180 °C. Trifluoromethanesulfonic acid (6.0 g, 40 mmol, 20 eq.) was added, and the reaction mixture was stirred for 9.5 hours at 180 °C. The reaction mixture was cooled to r.t., dissolved in CH₂Cl₂, and added to ice water. The mixture was neutralized using NaHCO₃ aq, extracted with CH_2Cl_2 (3 × 50 mL), washed with NaHCO₃ aq, and dried by MgSO₄. The organic layer was purified by SiO₂ column chromatography (CH₂Cl₂ : hexane = 1:1), evaporated, and dried in vacuo to afford αH -Br₂PyBTM (279 mg, 0.458 mmol, 28%) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.64 (s, 1H), 8.54 (s, 1H), 7.39 (dd, J = 2.1 Hz, 2.2 Hz, 2H), 7.26 (d, 1H), 7.24 (d, J = 2.3 Hz, 1H), 6.62 (s, 1H). MS (positive ion mode FAB) m/z: [M+H]⁺ Calcd for C₁₈H₈Br₂Cl₆N 609.71; Found 610. Elem. Anal. Calcd for C₁₈H₇NBr₂Cl₆: C 35.46, H 1.16, N 2.30. Found, C 35.48, H 1.22, N 2.20.

Synthesis of (3,5-dibromo-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (Br₂PyBTM)

Br₂PyBTM was synthesized by similar method to that of PyBTM.¹ Under a nitrogen atmosphere, α *H*-Br₂PyBTM (152 mg, 0.249 mmol) was dissolved in dry THF (11 mL). 'BuOK in THF (1M solution, 0.5 mL, 2 eq.) was added dropwise and the color of the solution changed to red. The reaction mixture was stirred overnight in the dark. I₂ (373 mg, 1.47 mmol, 5.9 eq.) in dry Et₂O (50 mL) was added dropwise and stirred for 2.25 h. Remaining I₂ was reduced by washing with 10 % Na₂S₂O₃ aq 3 times, water layer was extracted with Et₂O, and combined organic layer was dried with MgSO₄. The red solution was filtered, evaporated, purified by Al₂O₃ column chromatography (Et₂O : hexane = 1:4) and dried in vacuo to afford Br₂PyBTM (70.4 mg, 0.116 mmol, 46%) as a red solid. **IR** (KBr) 3092 (w), 3048 (w), 2955 (w), 2923 (w), 1553 (s), 1527 (s), 1395 (s), 1373 (s), 1292 (m), 1216 (w), 1204 (w), 1182 (m), 1134 (m), 1084 (w), 1071 (w), 1053 (w), 925 (w), 884 (w), 860 (s), 829 (m), 808 (s), 791 (m), 753 (m), 726 (w), 661 (w), 567 (w), 539 (w) **HRMS** (negative ion mode ESI-TOF) m/z: [M]⁻ Calcd for C₁₈H₆Br₂Cl₆N 607.6948; Found 607.6945. **Elem. Anal.** Calcd for C₁₈H₆NBr₂Cl₆: C 35.51, H 0.99, N 2.30. Found, C 35.83, H 1.20, N 2.07. **ESR** Spin concentration of Br₂PyBTM in toluene (1.00×10⁻⁴ M) was estimated by comparing the value of twice-integration of the signal intensity with that of the reference sample (4-hydroxy-TEMPO in toluene; 9.8×10⁻⁵ M). The existence of *S* = 1/2 spin on one Br₂PyBTM molecule was confirmed.

Synthesis of (3,5-difluoro-4-pyridyl)bis(2,4,6-trichlorophenyl)methane (α H-F₂PyBTM)

 α *H*-F₂PyBTM was synthesized by similar method to that of α *H*-PyBTM¹ utilizing superacid-catalyzed condensation of pyridine carboxaldehyde with arenes.² Under a nitrogen atmosphere, 3,5-difuoro-4-formylpyridin (104 mg, 0.727 mmol, 1 eq.) and 1,3,5-trichlorobenzene (1.81 g, 10.0 mmol, 14 eq.) was heated to 180 °C. Trifluoromethanesulfonic acid (3.0 g, 20 mmol, 28 eq.) was added, and the reaction mixture was stirred for 9 hours at 180 °C. The reaction mixture was cooled to r.t., dissolved in CH₂Cl₂, and added to ice water. The mixture was neutralized to pH 7 using NaHCO₃ aq, extracted with CH₂Cl₂ (3 × 50 mL), washed with NaHCO₃ aq, and dried by MgSO₄. The organic layer was purified by SiO₂ column chromatography (CH₂Cl₂ : hexane = 1:1), evaporated, and dried in vacuo to afford α *H*-F₂PyBTM (231 mg, 0.458 mmol, 65%) as a white solid. ¹H NMR (500 MHz, CDCl₃): δ 8.33 (s, 1H), 8.21 (s, 1H), 7.33 (s, 4H), 6.64 (s, 1H). MS (positive ion mode FAB) m/z: [M-H]⁺ Calcd for C₁₈H₈Cl₆F₂N 487.87; Found 488. **Elem. Anal.** Calcd for C₁₈H₇NCl₆F₂: C 44.31, H 1.45, N 2.87. Found, C 44.45, H 1.67, N 2.78.

Synthesis of (3,5-difluoro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl radical (F2PyBTM)

F₂PyBTM was synthesized by similar method to that of PyBTM.¹ Under a nitrogen atmosphere, α*H*-F₂PyBTM (121 mg, 0.248 mmol) was dissolved in dry THF (13 mL). ¹BuOK in THF (1M solution, 0.5 mL, 2 eq.) was added dropwise and the color of the solution changed to reddish orange. The reaction mixture was stirred overnight in the dark. I₂ (367 mg, 1.45 mmol, 5.8 eq.) in dry Et₂O (43 mL) was added dropwise and stirred for 2.25 h. Remaining I₂ was reduced by washing with 10 % Na₂S₂O₃ aq 3 times, water layer was extracted with Et₂O, and combined organic layer was dried with MgSO₄. The reddish orange solution was filtered, evaporated, purified by Al₂O₃ column chromatography (Et₂O : hexane = 1:4) and dried in vacuo to afford F₂PyBTM (54.3 mg, 0.112 mmol, 45%) as a red solid. **IR** (KBr) 3049 (w), 2955 (w), 2923 (w), 2851 (w), 1558 (s), 1529 (s), 1423 (s), 1372 (s), 1286 (m), 1257 (m), 1220 (m), 1185 (m), 1142 (m), 1028 (s), 918 (m), 875 (w), 859 (s), 829 (m), 806 (m), 793 (m), 734 (w), 570 (m), 538 (w) **HRMS** (negative ion mode ESI-TOF) m/z: [M]⁻ Calcd for C₁₈H₆Cl₆F₂N 485.8571; Found 485.8555. **Elem. Anal.** Calcd for C₁₈H₆NCl₆F₂: C 44.40, H 1.24, N 2.88. Found, C 44.79, H 1.63, N 2.67. **ESR** Spin concentration of F₂PyBTM in toluene (1.03 × 10⁻⁴ M) was estimated by comparing the value of twice-integration of the signal intensity with that of the reference sample (4-hydroxy-TEMPO in toluene; 9.8 × 10⁻⁵ M). The existence of *S* = 1/2 spin on one F₂PyBTM molecule was confirmed.

X-ray structural analysis

Red single crystals of Br₂PyBTM and F₂PyBTM were obtained by diffusing water (the lower layer) into an acetone solution of Br₂BTM or F₂PyBTM (the upper layer). Diffraction data for X-ray analysis were collected with an AFC10 diffractometer coupled with a Rigaku Saturn CCD system equipped with a rotating-anode X-ray generator producing graphite-monochromated MoK α radiation ($\lambda = 0.7107$ Å). Lorentz polarization and numerical absorption

corrections were performed with the program *Crystal Clear 1.3.6.* Structures were solved by the direct method using SIR 92 software³ and refined against F2 using SHELXL-97.⁴ Br₂PyBTM was refined using ISOR restraints. *Crystal Structure 4.0* software was used to prepare the material for publication. The crystallographic data are listed in Table S1. CCDC 1058942 and 1058943 contain the supplementary crystallographic data of this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Instruments

¹H NMR spectra were recorded using a BRUKER US500. The reported chemical shifts of the solvent residual peaks were used for calibration of the ¹H NMR spectra in CDCl₃ (δ 7.26). FAB mass spectra were recorded using a JEOL JMS-700MStation mass spectrometer using 3-nitrobenzyl alcohol as a matrix, and ESI–TOF mass spectra were recorded using an LCT Micromass spectrometer. ESR spectra were recorded with a JEOL JES-FA200 spectrometer with X-band microwave. 4-Hydroxy-TEMPO was used as a spin concentration standard. Deoxygenated sample solutions were charged in a 5mm ϕ sample tube. Magnetic field was calibrated with the Mn²⁺/MnO standard. UV-vis absorption spectra were recorded with a JASCO V-570 spectrometer. Steady-state emission spectra were measured with a HITACHI F-4500 spectrometer. Sample solutions were bubbled with argon before measurement. Absolute PL quantum yields were measured with a Hamamatsu Photonics C9920-02G. Fluorescence lifetime measurements were performed using a Hamamatsu Photonics Quantaurus-Tau C11367-02. Temperature dependence of fluorescence and UV-vis spectra were measured with a temperature controller (UNISOKU USP-203A). Electrochemical measurements were recorded with an ALS 750D electrochemical analyzer (BAS. Co., Ltd.). The working electrode was a 0.3 mm o.d. glassy carbon electrode; a platinum wire served as auxiliary electrode, and the reference electrode was an Ag⁺/Ag electrode (a silver wire immersed in 0.1 M Bu₄NCIO₄/0.01 M AgCIO₄/CH₃CN). Ferrocene was used as an internal standard for calibrating potentials. The solutions were deoxygenated with pure argon prior to the electrochemical measurements.

Evaluation of stability of X₂PyBTM under UV light

A solution (ca. 1×10^{-5} M, 2 mL) in 1-cm-optical-path-length quartz cells was bubbled with argon, sealed, and set at a HITACHI F-4500 spectrometer. Intensity of luminescence at 570 nm was observed exciting at 370 nm light (excitation slit was 5.0 nm, and shutter control was off). Logarithm of fluorescence intensity versus time was plotted and a slope of approximate line was estimated to be a rate of photolysis.

Evaluation of pKa value of X2PyBTMH⁺

In acetonitrile solution, p K_a of X₂PyBTMH⁺ was evaluated using a method and references developed by Leito et al..⁵ Br₂PyBTM solution was titrated with two reference bases, 3-nitroaniline: acid dissociation constant of conjugate acid p $K_a = 7.68$, 2-chloropyridine: p $K_a = 6.79$. From spectral simulation of each titration experiment, $\Delta p K_a$ (p K_a (PyBTM)–p K_a (reference base)) was calculated to be -0.59 ± 0.05 , $+0.36 \pm 0.05$ respectively, and p K_a of Br₂PyBTMH⁺ was decided to be 7.1. F₂PyBTM solution was titrated with two reference bases, 2-chloropyridine: p $K_a = 6.79$, and 4-nitroaniline: p $K_a = 6.22$. From spectral simulation of each titration experiment, $\Delta p K_a$ (p K_a (PyBTM)–p K_a (reference base)) was calculated to be $+0.19 \pm 0.05$, $+0.46 \pm 0.05$ respectively, and p K_a of PyBTMH⁺ was decided to be 6.8.

Computational details

DFT calculations were executed using the Gaussian09 program package.⁶ The geometries of the compounds were optimized without symmetry constraints using the crystal structure coordinate as the starting structure. Calculations were performed using the unrestricted Becke three-parameter hybrid functional with Lee–Yang–Parr correlation functional (B3LYP)⁷ or M06 functional⁸ with the 6-31G(d) basis set. Cartesian coordinates of all the optimized

geometries are listed in the supporting information. Frequency calculations were carried out to ensure that the optimized geometries were minima on the potential energy surface, in which no imaginary frequencies were observed in any of the compounds. TDDFT calculations were performed using UB3LYP to calculate the first 15 doublet transitions.

Acknowledgement

The authors thank Dr. Aiko Kamitsubo of the Elemental Analysis Center of The University of Tokyo for their assistance with the elemental analysis measurements.

References

1. Y. Hattori, T. Kusamoto and H. Nishihara, Angew. Chem. Int. Ed., 2014, 53, 11845-11848.

2. D. A. Klumpp, Y. Zhang, P. J. Kindelin and S. Lau, Tetrahedron, 2006, 62, 5915-5912.

3. A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, *J. Appl. Cryst.*, 1994, 27, 435.

4. G. M. Sheldrick, Acta Cryst. A, 2008, 64, 112–122.

5. I. Kaljurand, A. Kütt, L. Sooväli, T. Rodima, V. Mäemets, I. Leito and I. A. Koppel, J. Org. Chem., 2005, 70, 1019-1028.

6. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian, Inc., Wallingford CT, U. S. A. 2009.

7. A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.

8. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.

	Br ₂ PyBTM	F ₂ PyBTM
Empirical formula	C ₁₈ H ₆ Br ₂ Cl ₆ N	C ₁₈ H ₆ Cl ₆ F ₂ N
Fw/g mol ⁻¹	608.78	486.97
Crystal system	triclinic	monoclinic
Space group	<i>P</i> -1	P21/c
Crystal size / mm	0.35×0.15×0.10	0.65×0.45×0.25
Temperature / K	113	113
a/Å	7.461(4)	14.5687(14)
b/Å	10.846(6)	8.1370(5)
c/Å	12.660(7)	16.2873(16)
α/°	81.516(11)	90
βl°	88.763(14)	105.775 (4)
γ/°	87.731(14)	90
V/Å ³	1012.4 (9)	1858.1 (3)
Ζ	2	4
$ ho_{ m calced}$ / g cm ⁻³	1.997	1.741
λ / Å	0.7107	0.7107
μ / mm ⁻¹	4.811	0.946
Reflections collected	6357	12867
Independent reflections	3547	4067
Parameters	245	244
R _{int}	0.0591	0.0225
^a <i>R</i> 1	0.1517	0.0434
^b wR2	0.4232	0.1000
°GoF	1.173	1.058
CCDC No.	1058943	1058942

Table S1. Crystallographic data of Br₂PyBTM and F₂PyBTM.

 ${}^{a}R_{1} = \Sigma ||F^{o}| - |F^{c}|| / \Sigma |F^{o}| \ (I \geq 2\sigma(I)). \ {}^{b}wR_{2} = [\Sigma(w(F^{o2} - F^{c2})^{2} / \Sigma w(F^{o2})^{2}]^{1/2} \ (I \geq 2\sigma(I)). \ {}^{c}\text{GoF} = [\Sigma(w(F^{o2} - F^{c2})^{2} / \Sigma (N^{r} - N^{p})^{2}]^{1/2} \ (I \geq 2\sigma(I)). \ {}^{b}wR_{2} = [\Sigma(w(F^{o2} - F^{c2})^{2} / \Sigma w(F^{o2})^{2}]^{1/2} \ (I \geq 2\sigma(I)). \ {}^{c}\text{GoF} = [\Sigma(w(F^{o2} - F^{c2})^{2} / \Sigma (N^{r} - N^{p})^{2})]^{1/2} \ (I \geq 2\sigma(I)). \ {}^{b}wR_{2} = [\Sigma(w(F^{o2} - F^{c2})^{2} / \Sigma (N^{r} - N^{p})^{2})]^{1/2} \ (I \geq 2\sigma(I)). \ {}^{c}\text{GoF} = [\Sigma(w(F^{o2} - F^{c2})^{2} / \Sigma (N^{r} - N^{p})^{2})]^{1/2} \ (I \geq 2\sigma(I)). \ {}^{c}\text{GoF} = [\Sigma(w(F^{o2} - F^{c2})^{2} / \Sigma (N^{r} - N^{p})^{2})]^{1/2} \ (I \geq 2\sigma(I)). \ {}^{c}\text{GoF} = [\Sigma(w(F^{o2} - F^{c2})^{2} / \Sigma (N^{r} - N^{p})^{2})]^{1/2} \ (I \geq 2\sigma(I)). \ {}^{c}\text{GoF} = [\Sigma(w(F^{o2} - F^{c2})^{2} / \Sigma (N^{r} - N^{p})^{2})]^{1/2} \ (I \geq 2\sigma(I)). \ {}^{c}\text{GoF} = [\Sigma(w(F^{o2} - F^{c2})^{2} / \Sigma (N^{r} - N^{p})^{2})]^{1/2} \ (I \geq 2\sigma(I)). \ {}^{c}\text{GoF} = [\Sigma(w(F^{o2} - F^{c2})^{2} / \Sigma (N^{r} - N^{p})^{2} / \Sigma (N^{r} - N^{p})^{$

Table S2. Selected angles in the crystal of Br₂PyBTM and F₂PyBTM

Cl ₂ PyBTM	Br ₂ PyBTM	F_2PyBTM
117.5(4)° ^a	118.8(18)°	118.2(2)°
121.0(4)° a	119.6(19)°	122.0(3)°
121.5(4)° ^a	121.7(18)°	119.6(3)°
49.3° <i>a</i>	48.1°	33.3°
49.5° <i>a</i>	42.3°	56.4°
42.6° <i>a</i>	53.6°	51.7°
	Cl ₂ PyBTM 117.5(4)° ^{<i>a</i>} 121.0(4)° ^{<i>a</i>} 121.5(4)° ^{<i>a</i>} 49.3° ^{<i>a</i>} 49.5° ^{<i>a</i>} 42.6° ^{<i>a</i>}	Cl_2PyBTM Br_2PyBTM 117.5(4)° a118.8(18)°121.0(4)° a119.6(19)°121.5(4)° a121.7(18)°49.3° a48.1°49.5° a42.3°42.6° a53.6°

^a cited from ref. 1.

Table S3. Calculated angles of Br₂PyBTM and F₂PyBTM using UB3LYP/6-31G(d)

Angles	Cl ₂ PyBTM	Br ₂ PyBTM	F_2PyBTM
C4C1C10	119.9°	119.5°	120.0°
C4C1C16	119.9°	119.5°	120.0°
C10C1C16	120.2°	121.0°	120.0°
Dihedral angle between C4C10C16 plain and			
(3,5-dihalopyridyl)	47.5°	52.7°	31.3°
(2,4,6-trichlorophenyl including C10)	49.2°	48.5°	52.6°
(2,4,6-trichlorophenyl including C16)	49.2°	48.5°	52.6°

Table S4. Calculated angles of Br₂PyBTM and F₂PyBTM using UM06/6-31G(d)

Angles	Cl₂PyBTM	Br ₂ PyBTM	F ₂ PyBTM
C4C1C10	120.0°	119.2°	120.0°
C4C1C16	120.0°	119.2°	120.0°
C10C1C16	120.1°	121.6°	120.1°
Dihedral angle between C4C10C16 plain and			
(3,5-dihalopyridyl)	47.3°	50.1°	35.1°
(2,4,6-trichlorophenyl including C10)	49.1°	47.1°	50.6°
(2,4,6-trichlorophenyl including C16)	49.1°	47.1°	50.6°

Fig. S1 ESR spectrum of (a) Br₂PyBTM and (b) F₂PyBTM in toluene at room temperature.

Fig. S2 Cyclic voltammograms of (a) Br_2PyBTM (0.5 mM) and (b) F_2PyBTM (0.5 mM) in 0.1 M $Bu_4NClO_4-CH_2Cl_2$ at a scan rate of 0.1 V s⁻¹.

Fig. S3 Corrected emission spectra of Br_2PyBTM (orange), Cl_2PyBTM (green), and F_2PyBTM (blue) at 77 K in EPA (diethyl ether : isopentane : ethanol 5 : 5 : 2 v/v) matrix (solid lines) and at room temperature in CH_2Cl_2 (dashed lines).

Fig. S4 Plots showing the emission decay of Br₂PyBTM (Exp. No. 3 in Table S3) and F₂PyBTM (Exp. No. 1, 2, 3, 5 in Table S3) in dichloromethane under continuous excitation with light at $\lambda_{ex} = 370$ nm. The half-lives ($t_{1/2}$) are given by linear approximation.

Fig. S5 Protonation of (a) Br₂PyBTM and (b) F₂PyBTM by titration with trifluoromethanesulfonic acid (TsOH) in dichloromethane.

Fig. S6 Corrected fluorescence spectra of (a) Br_2PyBTM and $Br_2PyBTMH^+$, and (b) F_2PyBTM and $F_2PyBTMH^+$. Fluorescence of protonated forms are almost quenched.

Fig. S7 (a) Proton-response of cyclic voltammograms (CVs) of Br₂PyBTM solution (0.5 mM, 5 mL) in 0.1 M Bu₄NBF₄–CH₂Cl₂ at a scan rate of 0.1 V s⁻¹. Trifluoromethanesulfonic acid (TfOH, ca. 1 eq.) was added and CV was measured (red line). Diazabicyclo[5.4.0]undec-7-ene (DBU, ca. 1.1 eq.) was added to neutralize the solution and CV was measured (orange line) to observe reversibility of protonation. (b) Proton-response of CVs of F₂PyBTM solution (0.5 mM, 5 mL) in 0.1 M Bu₄NBF₄–CH₂Cl₂ at a scan rate of 0.1 V s⁻¹. TfOH (ca. 1 eq.) was added and CV was measured (blue line). DBU (1.1 eq.) was added to neutralize the solution and CV was measured (blue line). DBU (1.1 eq.) was added to neutralize the solution and CV was measured (blue line).

Cartesian coordinates of all the optimized geometries by DFT calculation

Br₂PyBTM (UB3LYP/6-31G(d))

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
			1.072016	1 5001 45	2 122579	
1	55 25	0	-1.9/3810	1.580145	-2.132578	
2	55 17	0	1.973920	1.580050	2.132505	
3	17	0	0.708826	-2.101658	2.066852	
4	17	0	-1./98065	0.922238	2.435697	
5	17	0	-5.256946	-2.797568	0.696927	
6	17	0	5.256830	-2.797637	-0.69/062	
7	17	0	1.797914	0.922203	-2.435679	
8	17	0	-0.708749	-2.101692	-2.066723	
9	7	0	0.000122	4.473365	0.000010	
10	6	0	-2.877931	-2.321910	-0.530226	
11	6	0	0.000012	1.619227	0.000033	
12	6	0	1.674731	-1.640670	0.679202	
13	6	0	-3.737275	-1.955410	0.500648	
14	6	0	-2.188928	-0.270511	1.212526	
15	6	0	2.877882	-2.321933	0.530212	
16	6	0	-1.674756	-1.640653	-0.679154	
17	6	0	-0.840394	2.388044	-0.833783	
18	6	0	1.269686	-0.584810	-0.177884	
19	6	0	-3.402161	-0.930116	1.378837	
20	6	0	-1.269753	-0.584784	0.177919	
21	6	0	0.840478	2.387999	0.833824	
22	6	0	0.813382	3.780756	0.799697	
23	6	0	2.188804	-0.270574	-1.212542	
24	6	0	-0.813201	3.780791	-0.799664	
25	6	0	3.737180	-1.955458	-0.500724	
26	6	0	-0.000021	0.140377	0.000037	
27	6	0	3.402035	-0.930185	-1.378905	
28	1	0	-3.146369	-3.109402	-1.223260	
29	1	0 0	3.146363	-3.109414	1.223246	
30	1	0 0	-4.060701	-0.660527	2.195010	
31	1	0 0	1 467201	4 349528	1 455146	
37	1	0	-1 466945	4 349605	-1 455151	
32	1	0	4 060532	-0 660610	-2 195110	
	1	0	+.000332	-0.000017	-2.173117	

F₂PyBTM (UB3LYP/6-31G(d))

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1		0	-0.325697	-1.618674	2.277081
2	17	0	-2.204466	1.162210	-2.115238
3	17	0	-5.240420	-2.545411	0.313313
4	17	0	2.204336	1.161302	2.115752
5	17	0	0.325298	-1.618165	-2.277379
6	17	0	5.239768	-2.546161	-0.313637
7	9	0	-1.936817	2.124266	1.374258
8	9	0	1.937561	2.122476	-1.373932
9	7	0	0.001306	4.811506	-0.000231
10	б	0	-0.000088	0.495403	0.000170
11	б	0	-0.936619	4.118036	0.653930
12	6	0	-0.965253	2.731089	0.670588
13	6	0	0.000206	1.947564	-0.000009
14	6	0	0.966255	2.730232	-0.670704
15	6	0	0.938690	4.117214	-0.654268
16	6	0	-3.730561	-1.667197	0.225478
17	6	0	-2.714275	-1.957418	1.128563
18	6	0	-1.518312	-1.249424	1.045717
19	6	0	-1.278109	-0.244298	0.078154
20	6	0	-2.357499	0.002756	-0.807505
21	6	0	-3.563541	-0.686415	-0.747713
22	6	0	3.729993	-1.667849	-0.225582
23	6	0	3.563114	-0.687279	0.747861
24	6	0	2.357207	0.002071	0.807810
25	6	0	1.277748	-0.244638	-0.077873
26	6	0	1.517808	-1.249551	-1.045699
27	6	0	2.713680	-1.957690	-1.128746
28	1	0	-1.698886	4.672649	1.195147
29	1	0	1.701523	4.671127	-1.195417
30	1	0	-2.850543	-2.707633	1.897348
31	1	0	-4.350346	-0.470423	-1.459576
32	1	0	4.349981	-0.471608	1.459752
33	1	0	2.849829	-2.707691	-1.897768

Br₂PyBTM (UM06/6-31G(d))

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Z
		0	2 103426	1 52/300	1 072300
1	35	0	-2 103182	1.524505	-1 972135
2	17	0	-0.719851	-2 120698	-2.016651
1	17	0	1 701396	0.807322	-2.010031
	17	0	5 308325	-2 644999	-0.687137
6	17	0	-5 308546	-2.044793	0.686541
7	17	0	-1 701274	0 896596	2 454677
8	17	0	0 719297	-2 122211	2.454077
0	17	0	0.000383	-2.122211 A A16A72	0.000424
9 10	6	0	2 012327	4.410472	0.512489
10	6	0	0.000022	1 577658	0.012489
11	6	0	1.686820	1.577058	0.640032
12	0	0	-1.060629	-1.042239	-0.049032
13	0	0	2 150260	-1.0/1901	-0.307917
14	0	0	2.139200	-0.201201	-1.230264
15	0	0	-2.912033	-2.275055	-0.515150
10 17	0	0	1.080341	-1.042/00	0.048381
1/	0	0	0.892800	2.337832	0.773092
10	6	0	-1.239803	-0.004291	0.204678
19	0	0	3.393833	-0.8/032/	-1.394540
20	0	0	1.259747	-0.604281	-0.204588
21	6	0	-0.892612	2.338201	-0.773062
22	6	0	-0.859226	3.726356	-0.742478
23	6	0	-2.159220	-0.261613	1.236574
24	6	0	0.859779	3.726071	0.743226
25	6	0	-3.761923	-1.871748	0.507594
26	6	0	-0.000027	0.108936	0.000096
27	6	0	-3.393879	-0.870634	1.394633
28	1	0	3.208005	-3.054096	1.208694
29	1	0	-3.208588	-3.053043	-1.209785
30	1	0	4.047438	-0.580683	-2.212539
31	1	0	-1.556880	4.293997	-1.358866
32	1	0	1.557688	4.293407	1.359613
33	1	0	-4.047395	-0.581312	2.212794

F₂PyBTM (UM06/6-31G(d))

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	17	0	-0.251640	-1.686637	2.177956
2	17	0	-2.204810	1.230576	-2.036822
3	17	0	-5.198730	-2.536304	0.310295
4	17	0	2.206123	1.230942	2.035749
5	17	0	0.249678	-1.689622	-2.175408
6	17	0	5.198105	-2.537743	-0.310901
7	9	0	-1.818683	2.107352	1.497061
8	9	0	1.819746	2.106017	-1.497339
9	7	0	0.000867	4.788755	-0.000932
10	6	0	0.000129	0.496682	0.000138
11	6	0	-0.883794	4.100530	0.717621
12	6	0	-0.912031	2.717238	0.736292
13	6	0	0.000499	1.945652	-0.000094
14	6	0	0.913259	2.716555	-0.736903
15	6	0	0.885349	4.099865	-0.719071
16	6	0	-3.700959	-1.658019	0.226766
17	6	0	-2.669521	-1.982668	1.094131
18	6	0	-1.480174	-1.273278	1.012009
19	6	0	-1.267074	-0.235118	0.083960
20	6	0	-2.356742	0.043631	-0.767722
21	6	0	-3.556811	-0.645403	-0.711498
22	6	0	3.700447	-1.659324	-0.226880
23	6	0	3.557083	-0.645947	0.710694
24	6	0	2.357140	0.043251	0.767237
25	6	0	1.266801	-0.235938	-0.083543
26	6	0	1.479042	-1.275094	-1.010722
27	6	0	2.668263	-1.984669	-1.093088
28	1	0	-1.607720	4.654101	1.315546
29	1	0	1.609402	4.652895	-1.317337
30	1	0	-2.790731	-2.764964	1.838248
31	1	0	-4.359959	-0.407105	-1.403274
32	- 1	0	4.360754	-0.407163	1.401694
33	1	0 0	2.788838	-2.767649	-1.836586
55	Ŧ	0	2.700050	2., 5, 6, 7	1.020200

Extracted results of TDDFT calculation.

Br₂PyBTM (UB3LYP/6-31G(d))

147A is SOMO.

Excited State 1: 2.128-A 2.5110 eV 493.77 nm f=0.0094 <S**2>=0.882 147A ->149A 0.14613 145B ->147B 0.32799 146B ->147B 0.91343 Excited State 2: 2.167-A 2.6641 eV 465.40 nm f=0.0252 <S**2>=0.924 147A ->149A 0.21897 145B ->147B 0.86763 146B ->147B -0.37212 Excited State 3: 2.182-A 2.7074 eV 457.94 nm f=0.0070 <S**2>=0.940 147A ->148A 0.22950 142B ->147B -0.42742 144B ->147B 0.83124 Excited State 4: 2.099-A 2.8770 eV 430.96 nm f=0.0066 <S**2>=0.851 147A ->150A -0.11018 143B ->147B 0.97324 145B ->147B 0.10526 Excited State 5: 2.139-A 2.8836 eV 429.96 nm f=0.0052 <S**2>=0.894 147A ->148A -0.19982 142B ->147B 0.80637 144B ->147B 0.50701 Excited State 6: 2.282-A 3.1009 eV 399.84 nm f=0.0000 <S**2>=1.051 147A ->149A 0.20836 141B ->147B 0.90850 141B ->148B 0.18927 145B ->147B -0.15706 145B ->148B -0.10944 Excited State 7: 2.336-A 3.1182 eV 397.61 nm f=0.0006 <S**2>=1.114 142A ->148A 0.14280 145A ->149A -0.11010 146A ->152A -0.11427 147A ->148A 0.12272

147A ->156A	-0.18481				
140B ->147B	0.87693				
146B ->152B	0.12035				
Excited State 8:	2.333-A	3.3223 eV	373.19 nm	f=0.0917	<s**2>=1.111</s**2>
147A ->148A	0.82691				
140B ->147B	-0.15233				
142B ->147B	0.35176				
144B ->147B	-0.13839				
145B ->149B	-0.12461				
Excited State 9.	2 519-A	3 3885 eV	365 90 nm	f-0 1515	~\$**?>-1 337
142A ->150A	0 10043	5.5005 0 1	505.90 mii	1-0.1010	(b) 27 = 1.557
143A ->151A	-0 17653				
144A ->150A	0.14758				
147A ->149A	0.75767				
141B ->147B	-0.29290				
142B ->149B	0.12072				
143B ->151B	-0.14086				
144B ->149B	-0.11079				
144B ->150B	-0.10186				
145B ->147B	-0.28555				
145B ->148B	-0.11114				
Excited State 10:	3.099-A	3.6574 eV	338.99 nm	f=0.0000	<\$**2>=2.150
142A ->148A	-0.19931				
142A ->151A	0.10238				
143A ->150A	-0.23216				
144A ->151A	0.21517				
145A ->149A	0.19130				
145A ->150A	-0.11991				
146A ->152A	0.27302				
147A ->156A	0.11418				
139B ->147B	0.33494				
140B ->147B	0.39658				
142B ->148B	0.18729				
142B ->151B	0.11147				
143B ->150B	0.21609				
144B ->148B	-0.11191				
144B ->151B	0.19363				
145B ->149B	-0.19780				
145B ->150B	0.11135				
146B ->152B	-0.25264				

F₂PyBTM (UB3LYP/6-31G(d))

121A is SOMO.

Excited State	1:	2.145-A	2.6088 eV	475.26 nm	f=0.0065	<s**2>=0.900</s**2>
121A ->12	3A	0.13726				
119B ->12	1B	0.42202				
120B ->12	1B	0.86425				
Excited State	2:	2.157-A	2.6811 eV	462.44 nm	f=0.0284	<s**2>=0.913</s**2>
121A ->12	3A	0.17467				
117B ->12	1B	-0.20725				
119B ->12	1B	0.81345				
120B ->12	1B	-0.44578				
				· · · · ·		
Excited State	3:	2.173-A	2.7200 eV	455.83 nm	f=0.0095	<s**2>=0.930</s**2>
121A ->12	2A	-0.25413				
114B ->12	1B	-0.10696				
116B ->12	1B	0.44110				
118B ->12	1B	0.81297				
Excited State	<u>4</u> .	2 141-A	2 8846 eV	429 81 nm	f=0.0076	<\$**7>=0.896
121A ->12	2A	-0 25313	2.00 10 0 1	129.01 IIII	1-0.0070	
116B ->12	1B	0.76834				
118B ->12	1B	-0.54091				
1102 / 12		010 107 1				
Excited State	5:	2.110-A	2.9206 eV	424.52 nm	f=0.0023	<s**2>=0.863</s**2>
115B ->12	1B	0.31982				
117B ->12	1B	0.89735				
119B ->12	1B	0.21382				
Excited State	6:	2.258-A	2.9386 eV	421.91 nm	f=0.0046	<s**2>=1.025</s**2>
121A ->12	3A	0.20056				
115B ->12	1B	0.87089				
115B ->123	3B	0.15307				
117B ->12	1B	-0.31528				
119B ->12.	3B	-0.10813				
Excited State	7:	2.258-A	3.3047 eV	375.17 nm	f=0.0236	<s**2>=1.025</s**2>
116A ->12	2A	0.16536	5.5017 01	<i>c, c, r</i> , min	1 0.0200	~ _/ 11020
121A ->12	2A	0.49575				
121A ->12	9A	-0.22385				
106B ->12	1B	-0.11236				

114B ->121B	0.67724				
116B ->121B	0.27573				
120B ->128B	-0.12583				
Excited State 8:	2.532-A	3.3859 eV	366.18 nm	f=0.1338	<s**2>=1.353</s**2>
117A ->125A	0.14716				
118A ->122A	0.10531				
119A ->124A	0.18170				
121A ->123A	0.76574				
115B ->121B	-0.22182				
116B ->122B	0.15782				
117B ->121B	0.13126				
117B ->125B	-0.13573				
118B ->122B	0.12274				
118B ->124B	0.12688				
119B ->121B	-0.28278				
119B ->123B	-0.12782				
Excited State 9:	2.875-A	3.5235 eV	351.88 nm	f=0.1091	<s**2>=1.817</s**2>
116A ->122A	-0.14662				
117A ->123A	-0.13218				
117A ->124A	-0.18289				
118A ->123A	0.10173				
118A ->124A	-0.17671				
119A ->125A	-0.25078				
120A ->123A	-0.20413				
121A ->122A	0.52037				
121A ->129A	0.15863				
114B ->121B	-0.29691				
116B ->121B	0.33527				
116B ->123B	0.16581				
117B ->122B	0.11030				
117B ->124B	0.18864				
118B ->125B	-0.20749				
119B ->122B	-0.23390				
119B ->124B	0.13407				
Excited State 10:	2.262-A	3.7188 eV	333.40 nm	f=0.0079	<s**2>=1.029</s**2>
118A ->125A	-0.10133				
121A ->123A	0.20361				
121A ->124A	0.92845				
116B ->124B	0.12858				
117B ->121B	0.10049				

Br₂PyBTM (UM06/6-31G(d))

147A is SOMO.

Excited State 1: 2.298-A 2.6146 eV 474.21 nm f=0.0154 <S**2>=1.070 147A ->149A 0.27454 145B ->147B 0.51266 146B ->147B 0.73262

This state for optimization and/or second-order correction.

Copying the excited state density for this state as the 1-particle RhoCI density.

2:	2.379-A	2.7561 eV	449.86 nm	f=0.0044	<s**2>=1.164</s**2>
A	0.12149				
A	0.31761				
iΑ	0.10494				
B	0.10378				
'B	-0.48547				
'B	0.70107				
В	-0.10494				
3:	2.224-A	2.8343 eV	437.45 nm	f=0.0103	<s**2>=0.986</s**2>
A	0.12097				
A	0.17556				
Β	0.69688				
Β	-0.63208				
B	-0.13555				
4:	2.263-A	3.0485 eV	406.71 nm	f=0.0006	<s**2>=1.030</s**2>
A	-0.15730				
А	-0.10561				
iΑ	-0.10474				
'B	0.22311				
B	0.65956				
B	-0.10118				
Β	0.60097				
5:	2.161-A	3.0677 eV	404.16 nm	f=0.0058	<s**2>=0.918</s**2>
A	-0.13446				
A	-0.13761				
Β	0.92940				
	2: A A B B B B B A A B B B A A B B B C C C C	2: 2.379 -A A 0.12149 A 0.31761 A 0.10494 B 0.10378 B -0.48547 B 0.70107 B -0.10494 3: 2.224 -A A 0.12097 A 0.17556 B 0.69688 B -0.63208 B -0.63208 B -0.13555 4: 2.263 -A A -0.15730 A -0.10561 A -0.10474 B 0.22311 B 0.65956 B -0.10118 B 0.60097 5: 2.161 -A A -0.13446 A -0.13761 B 0.92940	2: $2.379-A$ 2.7561 eV A 0.12149 A 0.31761 A 0.10494 B 0.10378 B -0.48547 B 0.70107 B -0.10494 3: $2.224-A$ 2.8343 eV A 0.12097 A 0.17556 B 0.69688 B -0.63208 B -0.13555 4: $2.263-A$ 3.0485 eV A -0.15730 A -0.10561 A -0.10474 B 0.22311 B 0.65956 B -0.10118 B 0.60097 5: $2.161-A$ 3.0677 eV A -0.13446 A -0.13761 B 0.92940	2: 2.379 -A 2.7561 eV 449.86 nm A 0.12149 A 0.31761 A 0.10494 B 0.10378 B -0.48547 B 0.70107 B -0.10494 3: 2.224 -A 2.8343 eV 437.45 nm A 0.12097 A 0.17556 B 0.69688 B -0.63208 B -0.13555 4: 2.263 -A 3.0485 eV 406.71 nm A -0.15730 A -0.10561 A -0.10474 B 0.22311 B 0.65956 B -0.10118 B 0.60097 5: 2.161 -A 3.0677 eV 404.16 nm A -0.13761 B 0.92940	2: 2.379 -A 2.7561 eV 449.86 nm f=0.0044 A 0.12149 A 0.31761 A 0.10494 B 0.10378 B -0.48547 B 0.70107 B -0.10494 3: 2.224 -A 2.8343 eV 437.45 nm f=0.0103 A 0.12097 A 0.17556 B 0.69688 B -0.63208 B -0.13555 4: 2.263 -A 3.0485 eV 406.71 nm f=0.0006 A -0.15730 A -0.10561 A -0.10474 B 0.22311 B 0.65956 B -0.10118 B 0.60097 5: 2.161 -A 3.0677 eV 404.16 nm f=0.0058 A -0.13761 B 0.92940

144B ->149B	0.11308				
145B ->147B	0.21187				
Excited State 6:	2.638-A	3.1466 eV	394.02 nm	f=0.0003	<s**2>=1.489</s**2>
142A ->148A	0.18624				
144A ->148A	-0.14672				
145A ->152A	0.12154				
146A ->152A	-0.17236				
147A ->148A	0.22793				
147A ->156A	-0.15905				
129B ->147B	0.10194				
137B ->147B	-0.10104				
140B ->147B	0.69090				
140B ->148B	0.12915				
142B ->147B	-0.14720				
144B ->147B	-0.24715				
144B ->148B	0.13762				
145B ->152B	-0.11007				
146B ->150B	0.10383				
146B ->152B	0.18619				
Excited State 7:	2.472-A	3.2833 eV	377.62 nm	f=0.0266	<s**2>=1.277</s**2>
143A ->151A	0.12954				
145A ->148A	0.11197				
147A ->149A	0.38710				
141B ->147B	0.69722				
141B ->148B	0.18708				
143B ->147B	0.18848				
143B ->151B	-0.11091				
145B ->147B	-0.32051				
145B ->148B	-0.14668				
146B ->147B	-0.10204				
146B ->148B	-0.10505				
Excited State 8:	2.454-A	3.3706 eV	367.84 nm	f=0.0907	<s**2>=1.255</s**2>
143A ->150A	-0.14368				
144A ->151A	-0.14828				
145A ->149A	0.11570				
147A ->148A	0.68972				
140B ->147B	-0.12534				
142B ->147B	0.49880				
143B ->150B	0.10060				
144B ->147B	-0.19111				

Excited State	9:	2.500-A	3.4372 eV	360.71 nm	f=0.1238	<s**2>=1.312</s**2>
142A ->150)A	-0.10313				
143A ->151	lA	-0.17652				
144A ->150)A	-0.13891				
147A ->149	ЭA	-0.51172				
141B ->147	7B	0.62472				
141B ->148	3B	0.19092				
143B ->147	7B	-0.13752				
143B ->151	IB	0.13561				
145B ->147	7B	0.25638				
146B ->147	7B	0.11952				
Excited State	10:	2.924-A	3.6758 eV	337.30 nm	f=0.0048	$=1.887$
142A ->148	3A	-0.15741				
142A ->151	IA	-0.11484				
143A ->150)A	-0.22119				
144A ->151	IA	-0.21324				
145A ->149	ЭA	0.11652				
145A ->150)A	-0.16120				
145A ->152	2A	-0.11642				
146A ->152	2A	0.24647				
147A ->148	3A	-0.21633				
140B ->147	7B	0.59810				
142B ->148	BB	0.14369				
142B ->151	IB	0.12997				
143B ->150)B	0.19893				
144B ->151	IB	0.18474				
145B ->149	θB	-0.12251				
145B ->150)B	0.14853				
146B ->149	θB	-0.10364				
146B ->152	2B	-0.22071				

F₂PyBTM (UM06/6-31G(d))

145B ->149B -0.13198

121A is SOMO.

Excited State	1:	2.325-A	2.6801 eV	462.61 nm	f=0.0184	<s**2>=1.102</s**2>
121A ->1	23A	-0.2940	07			
116B ->12	22B	0.1069	96			
117B ->12	21B	0.1155	55			
119B ->12	21B	-0.4194	0			

Excited State 2: 2.349-A 2.7791 eV 446.13 nm f=0.0078 <S**2>=1.129 120A ->123A 0.15299 121A ->122A 0.33384 114B ->121B 0.11821 116B ->121B -0.52319 118B ->121B 0.66923 120B ->122B -0.11437 Excited State 3: 2.183-A 2.8233 eV 439.15 nm f=0.0102 <S**2>=0.942 117B ->121B -0.21129 119B ->121B 0.77385 120B ->121B 0.52632 120B ->123B 0.11596 Excited State 4: 2.186-A 3.0437 eV 407.35 nm f=0.0013 <S**2>=0.945 121A ->122A -0.22153 116B ->121B 0.63092 118B ->121B 0.69224 Excited State 5: 2.158-A 3.0673 eV 404.21 nm f=0.0035 <S**2>=0.914 121A ->123A -0.14964 121A ->124A -0.12200 117B ->121B 0.89427 118B ->122B -0.11895 119B ->121B 0.32106 Excited State 6: 2.338-A 3.1298 eV 396.15 nm f=0.0019 <S**2>=1.116 121A ->123A 0.20343 115B ->121B 0.87170 115B ->123B 0.22725 117B ->121B 0.18430 119B ->121B -0.10883 119B ->123B -0.10086 120B ->123B 0.10525 Excited State 7: 2.608-A 3.3056 eV 375.07 nm f=0.0020 <S**2>=1.451 116A ->122A 0.23153 118A ->125A -0.11723 119A ->127A 0.11142 120A ->123A -0.16789 121A ->122A 0.31016

120B ->121B

0.76885

121A ->129A	-0.23996				
106B ->121B	-0.12849				
110B ->121B	0.11058				
114B ->121B	0.68359				
114B ->123B	0.10869				
116B ->121B	0.10016				
116B ->123B	-0.15409				
118B ->125B	0.12802				
119B ->128B	-0.10426				
120B ->122B	0.10207				
120B ->128B	-0.12959				
Excited State 8:	2.573-A	3.4072 eV	363.89 nm	f=0.1473	<s**2>=1.404</s**2>
117A ->125A	-0.16497				
118A ->124A	0.19705				
119A ->125A	-0.12344				
120A ->122A	0.11333				
120A ->129A	0.10208				
121A ->123A	0.62052				
121A ->124A	-0.11940				
115B ->121B	-0.35245				
116B ->122B	-0.12654				
116B ->124B	-0.10876				
117B ->121B	0.21599				
117B ->125B	0.14686				
118B ->122B	0.12212				
118B ->124B	-0.12865				
119B ->121B	-0.24979				
120B ->121B	0.27991				
Excited State 9:	2.726-A	3.5023 eV	354.00 nm	f=0.1149	<s**2>=1.608</s**2>
117A ->123A	-0.12934				
117A ->124A	-0.18534				
118A ->125A	0.24696				
119A ->124A	-0.16588				
120A ->123A	0.18975				
121A ->122A	0.53384				
116B ->121B	0.52012				
116B ->123B	0.11180				
117B ->122B	-0.11811				
117B ->124B	0.16554				
118B ->121B	-0.16366				
118B ->125B	-0.18653				

119B ->12	2B	0.11243				
119B ->12	4B	0.14345				
120B ->12	2B	-0.17007				
Excited State	10:	2.366-A	3.7814 eV	327.88 nm	f=0.0148	<s**2>=1.150</s**2>
120A ->12	5A	0.14852				
121A ->12	3A	0.30564				
121A ->12	4A	0.86367				
116B ->12	4 B	0.16048				
117B ->12	1 B	0.14892				
119B ->12	5B	-0.11625				