A comparative study on the efficacy of different probes to predict the photoactivity of nano-titanium dioxide toward biomolecules

Marucco et al.

## **Supplementary information**

## Summary of the content

| 1. | X-ray diffractograms                                                            | 3  |
|----|---------------------------------------------------------------------------------|----|
| 2. | ζ potential as a function of pH                                                 | 3  |
| 3. | UV-Vis spectra of the product of degradation of linoleic acid and 2-deoxyribose | .4 |
| 4. | UV-Vis spectra of the product of degradation of rhodamine B                     | 5  |
| 5. | Simulation of EPR spectra                                                       | 6  |
| 6. | Hyperfine splitting constant of the radical species                             | 7  |
| 7. | Summary of the experimental conditions                                          | 8  |
|    |                                                                                 |    |



**Figure S 1.** X-ray diffractograms of the  $TiO_2$  powders in the 20-80 = 2 $\theta$  range. The peaks of anatase (\*) and rutile (o) are showed above the diffractograms



Figure S2.  $\zeta$  potential as a function of pH of the TiO<sub>2</sub> powders.



**Figure S3.** Degradation of A) linoleic acid; B) 2-deoxyribose. Representative UV/vis spectra after 1h of irradiation. The pick at 535 nm corresponds to the TBA adduct of MDA, while pick at 455 nm and 500 nm are due to the formation of other TBA-reactive species (TBARS) like mono-aldheydes (J. A. Knight, R. K. Pleper, L. McClellan, *Clinical Chemistry* 1988, **34**, 2433-2438.)



**Figure S4.** Degradation of rhodamine B. Representative Uv-vis spectra recoded at 90 minutes for (A)T-A; (B) T-A/R; (C) T-R2



**Figure S5.** Experimental and simulated EPR spectra of DMPO adducts. (A) DMPO/CO<sub>2</sub>·-; (B) DMPO/HO·.



Figure S6. Experimental and simulated EPR spectra of PBN/O₂- adduct.

| Radical specie             | Solvent                  | Hyperfine splitting constants                 |  |  |
|----------------------------|--------------------------|-----------------------------------------------|--|--|
| DMPO/HO·                   | 100 mM PB pH 7.4         | A <sub>H</sub> 14.1G; A <sub>N</sub> 14.4G;   |  |  |
| DMPO/CO <sub>2</sub>       | 125 mM PB pH 7.4         | A <sub>H</sub> 15.4 G; A <sub>N</sub> 18.5 G; |  |  |
| PBN/O₂·⁻<br>PBN/HO₂·       | cyclohexane              | A <sub>N</sub> 13.5 G;                        |  |  |
| TEMPONE                    | cyclohexane              | A <sub>N</sub> 14.0 G;                        |  |  |
| TEMPONE<br>(from TMP)      | water                    | A <sub>N</sub> 15.7 G;                        |  |  |
| TEMPONE<br>(from TMPONE-H) | water                    | A <sub>N</sub> 15.7 G;                        |  |  |
| TEMPONE<br>(from TMPONE-H) | phosphate buffer, pH 7.4 | A <sub>N</sub> 15.7 G;                        |  |  |

## Table 1S. Hyperfine splitting constants of the radicals species detected

| Target<br>molecule   | Spin<br>trapping/probe   | Reactive<br>specie/product<br>detected | Solvent<br>/buffer | рН    | exposed surface<br>area of TiO <sub>2</sub><br>m <sup>2</sup> /ml |
|----------------------|--------------------------|----------------------------------------|--------------------|-------|-------------------------------------------------------------------|
| Rhodamine B          | -                        | -                                      | H <sub>2</sub> O   | 5-6   | 0.105                                                             |
| H <sub>2</sub> O     | DMPO<br>35 mM            | HO                                     | РВ<br>100mM        | 7-7.4 | 1.12                                                              |
| нсоон<br>1 <i>М</i>  | DMPO<br>75 mM            | CO₂.⁻                                  | РВ<br>125тМ        | 7-7.4 | 2.8                                                               |
| -                    | ТЕМРОNE-Н<br><i>50µМ</i> | TEMPONE                                | H <sub>2</sub> O   | 4-6   | 0.7                                                               |
| -                    | ТЕМРОNE-Н<br><i>50µМ</i> | TEMPONE                                | РВ<br>10тМ         | 7-7.4 | 0.7                                                               |
| O <sub>2</sub>       | 4-oxoTMP<br><i>50mM</i>  | TEMPONE                                | cyclohexane        | -     | 1.4                                                               |
| O <sub>2</sub>       | 4-oxo TMP<br><i>50mM</i> | TEMPONE                                | РВ<br><i>10тМ</i>  | 9     | 0.7                                                               |
| O <sub>2</sub>       | PBN<br>20mM              | 0 <sub>2</sub>                         | cyclohexane        | -     | 0.18                                                              |
| linoleic acid<br>1mM | -                        | MDA                                    | РВ<br>10тМ         | 7-7.4 | 1.05                                                              |
| 2-deoxyribose<br>1mM | -                        | MDA                                    | РВ<br><i>10тМ</i>  | 7-7.4 | 1.05                                                              |

## Table 2S. Summary of the experimental conditions.