Electronic Supplementary Information

Self-assembly of Thioether Functionalized Fullerenes on Gold and Their Activity in Electropolymerization of Styrene

Piotr Piotrowski^a, Joanna Pawłowska^a, Jan Pawłowski^b, Aleksandra Czerwonka^a, Renata Bilewicz^a,

Andrzej Kaim^a*

a Department of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.

b Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw

Żwirki i Wigury 101, 02-089 Warsaw, Poland.

Figure S1. ESI-MS spectrum of fullerene sulphide I as a [M]⁻ anion.

Figure S2. IR spectrum of fullerene sulphide I in KBr disk.

Figure S3. ¹H NMR spectrum of fullerene sulphide I in CDCl₃.

Figure S4. ¹³C NMR spectrum of fullerene sulphide I in CDCl₃.

Figure S5. ESI-MS spectrum of fullerene sulphide II as a [M]⁻ anion.

Figure S6. IR spectrum of fullerene sulphide II in KBr disk.

Figure S7. ¹H NMR spectrum of fullerene sulphide II in CDCl₃.

Figure S8. ¹³C NMR spectrum of fullerene sulphide II in CDCl₃.

Figure S9. ESI-MS spectrum of fullerene sulphide III as a [M]⁻ anion.

Figure S10. IR spectrum of fullerene sulphide III in KBr disk.

Figure S11. ¹H NMR spectrum of fullerene sulphide III in CDCl₃.

Figure S12. ¹³C NMR spectrum of fullerene sulphide III in CDCl₃.

Figure S13. ESI-MS spectrum of fullerene sulphide **IV** as a [M]⁻ anion.

Figure S14. IR spectrum of fullerene sulphide IV in KBr disk.

Figure S15. ¹H NMR spectrum of fullerene sulphide IV in CDCl₃.

Figure S16. ¹³C NMR spectrum of fullerene sulphide IV in CDCl₃

Figure S17. ESI-MS spectrum of **I-O** (methoxy analogue of fullerene sulphide **I**) as a [M]⁻ anion.

Figure S18. IR spectrum of I-O (methoxy analogue of fullerene sulphide I) in KBr disk.

Figure S19. ¹H NMR spectrum of I-O (methoxy analogue of fullerene sulphide I) in CDCl₃.

Figure S20. ¹³C NMR spectrum of I-O (methoxy analogue of fullerene sulphide I) in CDCl₃

Figure S21. Desorption curves obtained for fullerene sulphides: I - A, II - B, III - C and IV-D, in 0.5M KOH, v=100mV/s.

Figure S22. Voltammograms of compound **II** in 0.1M TBAHFP solution in toluene/acetonitrile (4:1), (left) CV, v = 100 mV/s; (right) DPV, tp= 3 ms, $\Delta E = 50 \text{ mV}$.

Figure S23. Voltammograms of compound **III** in 0.1M TBAHFP solution in toluene/acetonitrile (4:1), (left) CV, v = 100 mV/s; (right) DPV, tp= 3 ms, $\Delta E = 50 \text{ mV}$.

Figure S24. Voltammograms of compound IV in 0.1M TBAHFP solution in toluene/acetonitrile (4:1), (left) CV, v = 100 mV/s; (right) DPV, tp= 3 ms, $\Delta E = 50 \text{ mV}$.

Compound	C ₆₀	Ι	II	III	IV
E _{pc1} [V]	-0.467	-0.593	-0.564	-0.605	-0.542
E _{pa1} [V]	-0.396	-0.530	-0.496	-0.518	-0.610
E ₁ ^{0'} [V]	-0.432	-0.562	-0.530	-0.571	-0.576
E _{pc2} [V]	-0.874	-1.004	-0.969	-1.025	-0.947
E _{pa2} [V]	-0.807	-0.935	-0.906	-0.952	-1.021
E ₂ ^{0'} [V]	-0.841	-0.970	-0.938	-0.989	-0.984
E _{pc3} [V]	-1.40	-1.507	-1.546	-1.611	-1.597
E _{pa3} [V]	-1.324	-1.590	-1.472	-1.543	-1.528
E ₃ ^{0'} [V]	-1.362	-1.549	-1.509	-1.577	-1.563
E _{pc4} [V]	-1.895	-a)	-1.851	a)	a)
E _{pa4} [V]	-1.828	-a)	-1.747	a)	a)
E ₄ ^{0'} [V]	-1.862	-a)	-1.799	a)	a)
E _{pc5} [V]	-2.417	-a)	a)	a)	a)
E _{pa5} [V]	-2.274	-a)	a)	a)	a)
E ₅ ⁰ ' [V]	-2.346	-a)	a)	a)	a)

Table S1 Comparison of electrochemical properties of C_{60} and fullerene thioethers **I-IV** obtained from CV measurements.

^{a)} Peak corresponding to step 5 could not be resolved due to rising of the final current

Figure S25. UV-Vis spectrum of polystyrene F-PS in CH_2Cl_2 .

Figure S26. IR spectrum of polystyrene F-PS in KBr disk.