Supporting information

Experimental Section

Ammonium heptamolybdate ((NH₄)₆Mo₇O₄•4HO) and thiourea (NH₂CSNH₂) were used as the Mo and S sources, respectively, to synthesize MoS₂. In a typical synthesis of MoS₂-*x* (x = 0, 50, 100), 0.46 g (NH₄)₆Mo₇O₄•4H₂O and 0.6 g NH₂CSNH₂ were dissolved in 60 mL deionized water, and then x mg SiO₂ nanospheres were dispersed in the mixture by ultrasonication. The resulting solution was then transferred into a 100 ml Teflon-lined stainless autoclave following by reacting at 200°C for 16 h. The resultant products were collected, washed and ultrasonic re-dispersed to etch the SiO₂ nanospheres with NaOH (1 M) and immerse in the solution for 24 h, finally collected, washed with DI water untill about PH=7,dried in 50°C for 24 h.

The morphology and structure as-synthesized products were characterized by scanning electron microscope (SEM, Hitachi, S-4800), and further investigations were performed by the use of transmission electron microscopy (TEM, JEOL, JEM-010) and high-resolution transmission electron microscopy (HRTEM). The Raman spectra were collected on a Raman spectrometer (Labram-010) using 632 nm laser. XRD was used to to examine the crystallographic structure and phase of samples and EDX was used to detected the composite of the MoS₂-50 and MoS₂-100 after SiO₂ etching.

The electrochemical measurements were carried out using a two-electrode system with 2032 type coin cells and the lithium metal as the counter and reference electrode at the room temperature. To prepare the working electrode, active materials (70 wt%), conductivity agent (20 wt%, carbon black, Super-P-Li) and binder (10 wt%, polyvinylidene fluoride (PVDF) in NMP (N-methyl--pyrrolidone) were mixed to prepare the slurry, which was coated on copper foil by a coating machine followed by drying at 80°C in air and then at 120°C under vacuum for 8 hours. Finally, the resultant material was cut into 1mm small round pieces after the vacuum oven was cooled down to room temperature as the working electrode. The electrolyte was 1 M LiPF₆ dissolved in mixture of ethylene carbonate (EC): dimethyl carbonate (DMC): diethyl carbonate (DEC) =1:1:1 by volume. The working electrode, electrolyte, counter electrode, separator (Celgard 400) were assembled in an Argon-filled gloved box (Mikrouna, Super-MK100) with the concentration of oxygen and moisture below 1.0 and 0.1 ppm. Cyclic voltammetry (CV) profiles (0.01-3.0 V, 0.2 mV/s) were obtained on an electrochemical workstation (Metrohm-Autolab BV, Utrecht, The Netherlands). Galvanostatic charge/discharge cycles of the cells were conducted between 0.01 and 3.00 V vs Li/Li⁺ on a LAND CT-001 Abattery cycler (Wuhan, China) at room temperature, Electrochemical impedance spectroscopy (EIS) was measured on an electrochemical workstation (Metrohm-Autolab BV, Utrecht, The Netherlands) over the frequency range of 100 kHz to 0.01 Hz.

SiO₂ nanoparticles

Figure S2 XRD patterns of MoS_2 -50 and MoS_2 -100

Figure S3 EDX images of as-prepared (a) MoS₂-50 and (b) MoS₂-100 after SiO₂ etching.

Figure S4 Histogram of the diameter distribution of MoS_2 -0 (a), MoS_2 -50 (b) and

MoS₂-100 (c).

Figure S5 (a) TEM and (b) HRTEM of MoS_2 -100

Method	First charge capacity (mAh/g)	First discharge capacity (mAh/g)	Reversible capacity after (x) cycles	Current density (mA/g)	Reference
SiO ₂ assisted	1065	1312	987 (100)	134	This work
NaOH assisted	980	900	957 (50)	100	20
Carbon spheres template	-	-	750 (50)	100	22
Nanosheets self assemble	907	1236	902 (80)	100	19
MoS ₂ /Polyaniline	893	1127	801.2 (50)	100	21
polystyrene microsphere assisted	791	1160	672 (50)	100	31

Table S1 Performance comparison of different hierarchical MoS_2 in this paper and previously

reported references.

Materials	First charge capacity mAh/g	First discharge capacity mAh/g	Reversible capacity after (x) cycles	Current density(mA/g)	Reference
MoS ₂ -50	1065	1312	987 (100)	134 (0.2C)	This work
MoS ₂ -50	894.9	950.1	675.3 (100)	670 (1C)	This work
Co ₃ O ₄ @Graphene	941	-	740 (60)	200 (0.2C)	32
SnO ₂ -RGO	-	1680	776 (70)	100	33
Cr ₂ O ₃ /carbon	-	812.6	465.5(150)	100	34
Graphene-Wrapped Fe ₃ O ₄	770	-	580	700	35

Table S2 Performance comparison of $\ensuremath{\mathsf{MoS}_2}$ in this paper and some other $\ensuremath{\mathsf{O}xides}$ based composite

materials previously reported.