Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Tailoring the Electrical properties of Multilayer MoS₂ Transistors by Ultraviolet Light Irradiation

Arun Kumar Singh^{1,2*}, Shaista Andleeb², Jai Singh³ and Jonghwa Eom²

- ¹ Department of Physics, Motilal Nehru National Institute of Technology, Allahabad-211004, India.
- ² Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, Korea.
- ³ Department of Nano Science and Technology, Institute of Nano and Advanced Materials Engineering, Sejong University, Seoul 143-747, Korea.
- * Corresponding Author -E.mail: arunsigh.itbhu@gmail.com

Figure S1 (a)AFM image of ML MoS2 and (b) corresponding height profile.

Figure S2- Raman spectra of pristine ML MoS_2 .

Figure S3- (a) Optical image of mechanically fabricated ML MoS₂ FET device. (b) The I_D – V_{bg} characteristics with different exposure time of N₂ gas under DUV light for ML MoS₂ transistors.

Figure S4- Raman spectra of pristine and 30 minutes N_2 gas expose ML MoS_2 under DUV light