Supplementary information for

Synthesis of novel biobased polyimides derived from isomannide with good optical transparency, solubility and thermal stability

Gaili Yang,^a Rui Zhang,^a Huahua Huang,^{*a} Lixin Liu,^a Lei Wang^{*b} and Yongming Chen^{*a}

^a Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry and Chemical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou 510275, China. E-mail: huanghh27@mail.sysu.edu.cn (H. Huang), chenym35@mail.sysu.edu.cn (Y. Chen).

^b Shenzhen Key Laboratory of Special Functional Materials, College of Material Science, Shenzhen University, Shenzhen 518060, China. E-mail: wl@szu.edu.cn (L. Wang).

Fig. S1 13 C NMR spectrum of diamine M1 (D₂O, 400 MHz).

Fig. S2 ¹³C NMR spectrum of diamine M2 (DMSO-*d*₆, 400 MHz).

Fig. S3 ¹³C NMR spectrum of diamine M3 (DMSO-*d*₆, 400 MHz).

Fig. S4 13 C NMR spectrum of diamine M4 (DMSO- d_6 , 400 MHz).

Fig. S5 ¹H NMR spectrum of compound 1 (CDCl₃, 400 MHz).

Fig. S6 ¹H NMR spectrum of compound 2 (CDCl₃, 400 MHz).

Fig. S7 ¹H NMR spectrum of compound 3 (CDCl₃, 400 MHz).

Fig. S8 ¹H NMR spectrum of compound 4 (CDCl₃, 400 MHz).

Fig. S9 ¹H NMR spectrum of compound 5 (CDCl₃, 400 MHz).

Fig. S10 1 H NMR spectrum of the tetra-acid intermediate (CDCl₃, 400 MHz).