Electronic Supplementary Information for ## Activated Nanoporous Carbon-Gold Nanoparticle Composite Electrode with Enhanced Volumetric Capacitance David Avila-Brande^{a,*}, Daniel Arenas-Esteban^a, L. Carlos Otero-Díaz^a, Andrés Guerrero-Martínez^b, Gloria Tardajos^b, Javier Carretero-González^{c,*} ^aDepartment of Inorganic Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E–28040, Madrid, Spain. ^bDepartment of Physical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, E–28040, Madrid, Spain. ^cPolymer Ionics Research Group, Department of Inorganic Chemistry and Solid State Technology, Chemical Faculty, Warsaw University of Technology, Noakowskiego 3, PL-00664 Warsaw, Poland *Corresponding authors: David Ávila-Brande (<u>davilabr@quim.ucm.es</u>) and Javier Carretero-González (jabenzo@hotmail.com). ## Supplementary results **Figure SI1** Thermo-gravimetric analysis (TGA, black) and the differential temperature curve (DTG, red) of CAC-AuNPs **Figure SI2** Schematic diagram of two AuNPs in which an interdigitated bilayer of oleylamine separates adjacent nanocrystals. **Figure SI3** Pulsed Electrochemical Impedance Spectroscopy (PEIS) for the symmetric supercapacitor cell made with CAC nanoporous carbon electrodes. **Figure SI4** Pulsed Electrochemical Impedance Spectroscopy (PEIS) for the symmetric supercapacitor cell made with nanoporous carbon CAC-Gold Nanoparticles electrodes before and after cycling.