Supplementary Information for

Effect of L-tyrosine on aerobic sludge granulation and its stability

Jinghai Luo¹, Li Wei¹, Tianwei Hao^{1*}, Weiqi Xue¹, Hamish R. Mackey³, Guang-Hao Chen^{1,2*}

¹Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China.

²SYSU-HKUST Research Centre for Innovative Environmental Technology, Sun Yat-sen University, Guangzhou, China ³College of Science, Engineering and Technology, Hamad bin Khalifa University, Education City, Doha, Qatar (*Corresponding author: <u>thao@ust.hk</u>)

Number of pages: 4 Number of tables: 4 Number of figures: 2

Table. A.1 Operational conditions in both reactors d	luring operation
--	------------------

Reactor	Control	Tyrosine
Temperature (⁰ C)	23 ± 1	23 ± 1
DO (mg/L)	6.5-8.2	5.5-8.2
PH	7.4-8.0	7.2-8.2
Tyrosine (mg/L)	0	6
Settling time (min)	5	5
Aeration time (min)	120	120
Total cycle time (h)	2.4	2.4
Air flow (L/min)	2	2

Table. A.2	The	contents	of	synthetic	stock	solution
				-		

Components	Concentration (g/L)	
Glucose	19.57	
Sodium acetate	26.10	
Yeast extract	9.78	
NH ₄ Cl	4.16	
K_2HPO_4	1.92	
KH ₂ PO ₄	0.72	
MgCl ₂ .6H ₂ O	8.32	
$CaCl_2$	5.20	

Table. B.1	The contents of t	race solution

Components	Concentration (g/L)
FeCl ₃ .6H ₂ O	15.0
H_3BO_3	1.5
$CuSO_4$	0.2
KI	0.3
$MnSO_4.H_20$	1.0
(NH ₄) ₆ Mo ₇ O ₂₄ .4H ₂ O	0.4
$ZnSO_4.7H_2O$	1.2
CoCl ₂ .6H ₂ O	1.5

Table. A.3 The pollutants concentration and COD/N ratio set for each phase

Pollutant	Phase I	Phase II
COD (mg/L)	400	400
NH4 ⁺ -N (mg/L)	100	400
COD/N ratio	4	1
Period (days)	1-59	60-120

Fig. A.1 3D-EEM spectra of EPS in the granules of the control reactor at (a) 1^{st} day, (c) 59^{th} day, (e) 120^{th} day and that of the testing reactor at (b) 1^{st} day, (d) 59^{th} day, and (f) 120^{th} day

Fig. A.2 The rarefaction curves of microbial community in control and testing system