Electronic Supplementary Information

Oxide-supported Rh catalysts for H₂ generation from low-temperature ethanol steam reforming: Effects of support, Rh precursor and Rh loading on catalytic performance

Lin Huang,* Catherine Choong, Luwei Chen, Zhan Wang, Ziyi Zhong, Kee Ann Chng and Jianyi Lin*

Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore 627833, Singapore Fax: (+65)-6316-6182 E-mail: <u>huang_lin@ices.a-star.edu.sg (L. Huang); LiJY@ntu.edu.sg (J. Lin)</u>

XRD analysis of MgO derived from Mg(OH)₂

Fig. 1 shows the XRD pattern change after 4 h of calcination of $Mg(OH)_2$ in air at 400 °C. Evidently, the pattern in Fig. 1(a) due to $Mg(OH)_2$ (*Physicochem. Probl. Miner. Process,* 2012, **48**, 631-643) disappeared and a new pattern in Fig. 1(b) assigned to MgO (*Appl. Catal. A.*, 2000, **198**, 33-41) appeared, which indicates the structural transition after the calcination.

Fig. 1 XRD patterns of Mg(OH)₂ (a) before and (b) after 4 h of calcination in air at 400 °C.

TPR pertinent to CeO₂ and Rh precatalysts

 $Rh_4(C)/CeO_2$ In the cases where CeO₂-supported Rh precatalysts are made from zero-valent Rh carbonyls, the resulting Rh in the precatalysts remains zero-valent.³³ It is usually unlikely to observe any Rh reduction signals in the TPR of the precatalysts. Hence we oxidized such Rh precatalysts as $Rh_4(C)/CeO_2$ in air at 21 °C for 5 h and at 110 °C overnight before TPR experiments, in order to study the reductive behaviour of the oxidized Rh on CeO₂.

CeO₂ and Rh³⁺(N)/CeO₂ Fig. 2 shows the TPR patterns of CeO₂ alone and Rh³⁺(N)/CeO₂ following 2 h of drying in vacuum (10⁻² torr) at 21 °C. Similar to a reported TPR result of commercial low-surface-area CeO₂,⁷⁴ the TPR pattern of our commercial low-surface-area CeO₂ displayed two shoulder peaks near 540 and 645 °C below 800 °C. In the TPR pattern of Rh³⁺(N)/CeO₂, these two shoulder peaks decreased in intensity in favour of the appearance of a very weak peak centred at 380 °C, which would result from the shoulder peak shift to lower temperatures for the reduction of surface Ce⁴⁺ due to H spillover from Rh to the support. Since Rh³⁺(N)/CeO₂ has not undergone any calcination pretreatments, the Rh³⁺-CeO₂ interaction is very weak. On the other hand, the surface area of our CeO₂ is very low. Therefore, the observed H spillover effect is negligible in terms of TPR peak intensity.

Fig. 2 TPR profiles of (a) CeO₂ and (b) Rh³⁺(N)/CeO₂.

Rh 3d XPS analysis of CeO2-supported Rh catalysts

Figs. 3 and 4 show the Rh 3d XPS spectral analyses of all the eight Rh/CeO₂ catalyst samples via curve-fitting.

Fig. 3 Rh 3d XPS spectra of $Rh(N)/CeO_2$ obtained from $Rh^{3+}(N)/CeO_2$ calcined at 400 °C. The black and red curves stand for the raw experimental data and the sum of the Gaussian components, respectively.

Fig. 4 Rh 3d XPS spectra of Rh(N)/CeO₂ obtained from Rh³⁺(N)/CeO₂ calcined at 700 °C. The black and red curves stand for the raw experimental data and the sum of the Gaussian components, respectively.

XRD analysis of CeO₂-supported Rh catalysts

Figs. 5 and 6 show the XRD patterns of $Rh(N)/CeO_2$ and $Rh(A)/CeO_2$ before and after 25 h of ESR at 350 °C.

Fig. 5 XRD patterns of $Rh(N)/CeO_2$ (a) before and (b) after 25 h of ESR at 350 °C.

Fig. 6 XRD patterns of Rh(A)/CeO_2 (a) before and (b) after 25 h of ESR at 350 $^{\rm o}C.$