Electronic Supplementary Information (ESI)

Novel red blood cell shape α -Fe₂O₃ microstructures and FeO(OH) nanorods as high capacity supercapacitors

Rongmei Liu,*^a Zixiang Jiang,^a Qi Liu,^b Xiandong Zhu,^a Li Liu,^a Lu Ni^a and Chengcheng Shen^a

^a College of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu Anhui

241000, P. R. China,

Fax: +86 553 2871 255; Tel: +86 553 2871 255

E-mail: liurongmei@ahpu.edu.cn

^b College of Materials Science and Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. China.

Fig. S1 Nitrogen adsorption–desorption isotherms of the as-prepared α -Fe₂O₃ microspheres. Inset: the pore size distribution.

Fig. S2 SEM images of the sample prepared without the addition of (a, b) PVA and (c, d) NH_4CI .

Fig. S3 SEM images of the sample prepared at 180 $^\circ\text{C}.$

Fig. S4 Cycle performance of the samples measured at a scan rate of 50mV·s⁻¹ for 5,000 cycles.