Supporting Information

Synthesis of tetra-substituted olefins via annulation by Pd-catalyzed carbopalladation/C-H activation and solid state fluorescence properties

Kanagaraj Naveen, Avanashiappan Nandakumar and Paramasivan Thirumalai Perumal*

Organic & Bio-organic Chemistry Division, CSIR-Central Leather Research Institute, Adyar, Chennai-600 020,

India

E-mail id:ptperumal@gmail.com

Table of contents

۱.	General procedure for the preparation of starting materials (1a-p)	S3
II.	Copies of ¹ H and ¹³ C NMR of compounds (1a-p)	S4
III.	Copies of ¹ H and ¹³ C NMR, High Resolution Mass Spectroscopy (HR-MS) of	
	compounds (3a-p)	S20
IV.	Uv visible and emission spectra of compounds (3a-p) in solution	
	90% of H_2O/CH_3CN and thin film states	S44
V.	Absorption and emission spectra of 3a in CH_3CN/H_2O mixtures with	
	different water fraction ($f_w = 0 - 99\%$)	S52
VI.	Luminescent photo of 3a in different states	\$53
VII.	FE-SEM analysis of 3a	\$54
VIII.	Hirshfeld Surface Analyses of 3a	\$54
IX.	Compounds 3b-p (from left to right) in solution (90 % of H_2O in CH_3CN) and in the condensed phase under UV irradiation	\$57

General procedure for the preparation of starting materials (1a-p)

A mixture of CuI (15 mol %), amine S₁ (0.50 mmol), aldehyde S₂ (0.55 mmol) and alkyne S₃ (0.75 mmol) in toluene (3mL) was heated at 100 °C for 3 h. Then the reaction mixture was filtered through Celite and washed with ethyl acetate. After removal of the solvent, the residue was purified by column chromatography on silica gel using petroleum ether/ ethyl acetate as eluent, affording 2-bromo-N-benzylpropargylamines compounds (1a-p).

Copies of ¹H NMR and ¹³C NMR of the compounds (1a-p)

¹H-NMR spectrum of compound **1b**

¹H-NMR spectrum of compound **1c**

¹³C-NMR spectrum of compound **1c**

¹H-NMR spectrum of compound **1d**

¹³C-NMR spectrum of compound **1d**

¹H-NMR spectrum of compound **1e**

¹³C-NMR spectrum of compound **1e**

¹H-NMR spectrum of compound **1f**

¹³C-NMR spectrum of compound **1f**

¹H-NMR spectrum of compound **1g**

¹³C-NMR spectrum of compound **1g**

¹H-NMR spectrum of compound **1h**

¹H-NMR spectrum of compound **1i**

¹H-NMR spectrum of compound **1**j

¹³C-NMR spectrum of compound **1**j

¹H-NMR spectrum of compound **1**k

¹³C-NMR spectrum of compound **1**k

¹H-NMR spectrum of compound **1**I

¹³C-NMR spectrum of compound **1**I

¹H-NMR spectrum of compound **1m**

¹H-NMR spectrum of compound **1n**

¹³C-NMR spectrum of compound **1n**

¹H-NMR spectrum of compound **10**

 $^{1}\text{H-NMR}$ spectrum of compound 1p

Copies of 1H and 13C NMR and HR-MS of the compounds (3a-p)

¹H-NMR spectrum of compound **3a**

DEPT-135 NMR spectrum of compound 3a

HRMS spectrum of compound 3a

¹H-NMR spectrum of compound **3b**

HRMS spectrum of compound **3b**

¹³C-NMR spectrum of compound 3c

¹H-NMR spectrum of compound **3d**

HRMS spectrum of compound 3d

¹H-NMR spectrum of compound **3e**

¹³C-NMR spectrum of compound **3e**

HRMS spectrum of compound 3e

¹H-NMR spectrum of compound **3f**

¹³C-NMR spectrum of compound **3f**

HRMS spectrum of compound 3f

¹H-NMR spectrum of compound **3g**

HRMS spectrum of compound 3g

¹H-NMR spectrum of compound **3h**

HRMS spectrum of compound 3h

¹H-NMR spectrum of compound **3i**

HRMS spectrum of compound 3i

¹H-NMR spectrum of compound **3**j

HRMS spectrum of compound 3j

 $^1\text{H-NMR}$ spectrum of compound 3k

 $^{\rm 13}\text{C-NMR}$ spectrum of compound 3k

HRMS spectrum of compound 3k

¹H-NMR spectrum of compound **3I**

¹³C-NMR spectrum of compound **3I**

HRMS spectrum of compound 3I

¹H-NMR spectrum of compound **3m**

HRMS spectrum of compound 3m

¹H-NMR spectrum of compound **3n**

¹³C-NMR spectrum of compound **3n**

HRMS spectrum of compound **3n**

¹H-NMR spectrum of compound **30**

HRMS spectrum of compound 30

¹H-NMR spectrum of compound **3p**

¹³C-NMR spectrum of compound **3p**

HRMS spectrum of compound 3p

Uv visible and emission spectra of compounds (3a-p) in solution 90% of H_2O/CH_3CN and thin

film states

Uv visible (solid line) and emission (dashed line) spectra of compound **3a** in solution 90% H_2O/CH_3CN mixture (red) and in thin film (blue)

Uv visible (solid line) and emission (dashed line) spectra of compound **3b** in solution 90% H_2O/CH_3CN mixture (red) and in thin film (blue)

Uv visible (solid line) and emission (dashed line) spectra of compound **3c** in solution 90% H_2O/CH_3CN mixture (red) and in thin film (blue)

Uv visible (solid line) and emission (dashed line) spectra of compound **3d** in solution 90% H_2O/CH_3CN mixture (red) and in thin film (blue)

Uv visible (solid line) and emission (dashed line) spectra of compound **3e** in solution 90% H_2O/CH_3CN mixture (red) and in thin film (blue)

Uv visible (solid line) and emission (dashed line) spectra of compound **3f** in solution 90% H_2O/CH_3CN mixture (red) and in thin film (blue)

Uv visible (solid line) and emission (dashed line) spectra of compound 3g in solution 90% H₂O/CH₃CN mixture (red) and in thin film (blue)

Uv visible (solid line) and emission (dashed line) spectra of compound **3h** in solution 90% H_2O/CH_3CN mixture (red) and in thin film (blue)

Uv visible (solid line) and emission (dashed line) spectra of compound **3i** in solution 90% H_2O/CH_3CN mixture (red) and in thin film (blue)

Uv visible (solid line) and emission (dashed line) spectra of compound **3j** in solution 90% H_2O/CH_3CN mixture (red) and in thin film (blue)

Uv visible (solid line) and emission (dashed line) spectra of compound **3k** in solution 90% H_2O/CH_3CN mixture (red) and in thin film (blue)

Uv visible (solid line) and emission (dashed line) spectra of compound **3I** in solution 90% H_2O/CH_3CN mixture (red) and in thin film (blue)

Uv visible (solid line) and emission (dashed line) spectra of compound **3m** in solution 90% H_2O/CH_3CN mixture (red) and in thin film (blue)

Uv visible (solid line) and emission (dashed line) spectra of compound **30** in solution 90% H_2O/CH_3CN mixture (red) and in thin film (blue)

Uv visible (solid line) and emission (dashed line) spectra of compound **30** in solution 90% H_2O/CH_3CN mixture (red) and in thin film (blue)

Uv visible (solid line) and emission (dashed line) spectra of compound **3p** in solution 90% H_2O/CH_3CN mixture (red) and in thin film (blue)

Absorption spectra of **3a** in CH₃CN/H₂O mixtures with different water fraction (f_w),

PL spectra of **3a** in CH₃CN/H₂O mixtures with different water fraction (f_w), Concentration (μ M): 10; excitation wavelength (nm): 320

Photos of **3a** in CH₃CN/H₂O mixtures ($f_w = 70\%$, $f_w = 80\%$, $f_w = 90\%$, $f_w = 99\%$ from left to right) taken under UV luminescent

Photo of microscopic image of **3a** in crystal state

Photo of 3a has taken under UV luminescent

FE-SEM analysis of 3a in 90 % (left) and 99 % (right) of water in acetonitrile

Hirshfeld Surface Analyses of 3a

Total interactions

O...H interaction(3.8 %)

N...H interaction (0.1 %)

Hirshfield surface diagram of compound **3a**

Compounds 3b-p (from left to right) in solution (90 % of H_2O inCH₃CN) and in the

condensed phase under UV irradiation

