Electronic Supporting Information

Amide Functionalized Metal Organic Frameworks for Diastereoselective Nitroaldol (Henry) Reaction in Aqueous Medium
Anup Paul, ${ }^{\text {a* }}$ Anirban Karmakar, ${ }^{\text {a }}$ M. Fátima C. Guedes da Silva, ${ }^{\text {a* }}$ Armando J. L. Pombeiro ${ }^{\text {a* }}$
${ }^{a}$ Centro de Química Estrutural, Instituto Superior Técnico,Universidade de Lisboa, Av. Rovisco Pais, 1049-001
Lisboa. Portugal.E-mail: kanupual@gmail.com, fatima.guedes@tecnico.ulisboa.pt, pombeiro@,tecnico.ulisboa.pt.

Table of contents: Pages
Experimental procedures
Synthesis and characterization S2-S3
Thermogravimetric analyses S8-S9
Supplementary Figures
Fig. S1 S3
Fig. S2 S4
Fig. S3 S4
Fig. S4 S5
Fig. S5 S5
Fig. S6 S6
Fig. S7 S6
Fig. S8 S7
Fig. S9 S7
Fig. S10 S8
Fig. S11 S8

Fig. S12 S9
Fig. S13 S10
Fig. S14 S11
Fig. S15 S12
Fig. S16 S12
Table S1 S13
Table S2 S13-S14

Experimental Section

Synthesis of methyl 4-(chlorocarbonyl)benzoate

Synthesis of P1

Thionyl chloride (10 mL) was added to a methanolic solution (60 mL) of terephthalic acid $\left(\mathrm{H}_{2} \mathrm{DA}\right)(2.0 \mathrm{~g}, 60.19 \mathrm{mmol})$ and the suspension was refluxed overnight. The solvent was distilled off and the mixture was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$). It was then dried over sodium sulfate. Rotary evaporated of the solvent gave the diester $\mathbf{P 1}$ as pure colourless solid. Yield: $60 \%{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 8.08\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 3.93\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{OCH}_{3}\right) ;{ }^{13} \mathrm{C}-$ NMR (75.45 MHz, $\left.\mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 166.26,133.88,129.54,52.43$.

Synthesis of P2

To a methanolic solution of $\mathrm{P} \mathbf{1}(1 \mathrm{~g}, 5.16 \mathrm{mmol})$ was added solid potassium hydroxide $(0.290 \mathrm{~g}$, 5.18 mmol) and the reaction mixture was heated to reflux overnight. Removal of the solvent to dryness under reduced pressure in a rotary evaporator afforded a white crystalline material. The
mixture was then dissolved in water, washed several times with dichlormethane, and acidified with conc. HCl to pH 1 upon which a white solid precipitated out. The precipitate thus obtained was dissolved in diethyl ether and dried over magnesium sulfate. Removal of the solvent afforded the desired product $\mathbf{P 2}$ as a white solid. Yield: 82%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, \delta\right.$ $\mathrm{ppm}): 8.06\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.45 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, \delta \mathrm{ppm}\right):$ 167.13, 165.83, 135.28, 133.22, 129.89, 129.34, 52.61.

Synthesis of P3

$\mathbf{P 2}(1.0 \mathrm{~g}, 5.56 \mathrm{mmol})$ and a catalytic amount of N, N-dimethylformide were heated to reflux in thionyl chloride (20 mL) overnight. Then, the thionyl chloride was distilled off and the resulting solid was redissolved in dichloromethane (60 mL), washed several times with water, and dried using anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Decantation and concentration to dryness under vacuum led to the desired product $\mathbf{P 3}$ as an off white solid. Yield: 91%. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 8.19$ $\left(\mathrm{s}, 4 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 3.99\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{O}-\mathrm{CH}_{3}\right),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75.45 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta \mathrm{ppm}\right): 168.16,165.45$, 136.62, 135.57, 130.98, 129.33, 52.60.

Fig. S1. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{P} 1$ recorded in CDCl_{3}.

Fig. S2. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{P} 1$ recorded in CDCl_{3}.

Fig. S3. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{P} 2$ recorded in DMSO- d_{6}.

Fig. S4. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{P} 2$ recorded in DMSO- d_{6}.

Fig. S5. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{P} 3$ recorded in CDCl_{3}.

Fig. S6. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{P} 3$ recorded in CDCl_{3}.

Fig. S7. ${ }^{1} \mathrm{H}$ NMR of MeL recorded in DMSO- d_{6}.

Fig. S8. ${ }^{13} \mathrm{C}$ NMR of MeL recorded in DMSO- d_{6}.

Fig. S9. ${ }^{1} \mathrm{H}$ NMR of $\mathbf{H L}$ recorded in DMSO- d_{6}.

Fig. S10. ${ }^{13} \mathrm{C}$ NMR of $\mathbf{H L}$ recorded in DMSO- d_{6}.

Thermogravimetric analyses

In order to get an insight into the thermal stability and structural variation of frameworks $\mathbf{1}$ and $\mathbf{2}$ as a function of temperature, thermogravimetric analysis (TGA) was carried out under dinitrogen in the $30-700{ }^{\circ} \mathrm{C}$ range at a heating rate of $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$ (Fig. S11). Compound $\mathbf{1}$ with a 2D net exhibits the loss of two non-coordinated DMF molecules at $89-343^{\circ} \mathrm{C}$ with an observed weight loss of 15.4% (calculated $=15.8 \%$). Above $350{ }^{\circ} \mathrm{C}$, the polymeric structure disintegrates leading to the formation of ZnO (Fig. S11).

The TGA analysis of framework 2 (Fig. S11) exhibits a weight loss of 35.8% (calculated $=36.2$ $\%$) in the $75-325{ }^{\circ} \mathrm{C}$ temperature range, corresponding to the loss of four DMF and one water molecules. After this, the remaining material decomposes gradually leading to the formation of CuO .

Fig S11. Thermogravimetric curves for 1 and 2.

Fig. S12. FT-IR spectra of HL, 1 and 2.

Fig. S13. Example of integration in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for the determination of Henry reaction products (Table 1, entry 5).

Calculation of the yield and selectivity for complex 1 in the Henry reaction:

Yield:

Total amount of compounds
p-nitrobenzaldehyde + anti + syn $=1+3.50+9.99=14.49$
Percentage of the unreacted aldehyde: $(1 / 14.49) \times 100=7 \%$
Yield of β-nitroalkanols $=100-7=93 \%$
Yield of syn $=(9.99 / 14.49) \times 100=69 \%$
Yield of anti $=(3.5 / 14.49) \times 100=24 \%$

Selectivity:

$($ syn + anti $)=69+24=93(100 \%)$.
Selectivity of syn $=(69 / 93) \times 100=74 \%$
Selectivity of anti $=(24 / 93) \times 100=26 \%$

Fig. S14. Example of integration in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for the determination of Henry reaction products (Table 1, entry 5).

Calculation of the yield and selectivity for complex 2 in the Henry reaction:

Yield:

Total amount of compounds:
p-nitrobenzaldehyde + anti + syn $=1+3.07+5.67=9.74$
Percentage of the unreacted aldehyde: $(1 / 9.74) \times 100=10 \%$
Yield of β-nitroalkanols $=100-10=90 \%$
Yield of $\operatorname{syn}=(5.67 / 9.74) \times 100=58 \%$
Yield of anti $=(3.07 / 9.74) \times 100=31 \%$

Selectivity:

$($ syn + anti $)=58+31=89(100 \%)$.
Selectivity of syn $=(58 / 89) \times 100=65 \%$
Selectivity of anti $=(31 / 89) \times 100=35 \%$

Fig. S15. FT-IR spectra of $\mathbf{1}$ and $\mathbf{2}$ recorded before and after the catalytic reaction.

Fig. S16. Powder XRD of $\mathbf{1}$ and $\mathbf{2}$ recorded before and after the catalytic reaction.

Table S1: Hydrogen bond geometry $\left(\AA,{ }^{\circ}\right)$ in compounds 1 and 2.

Compound	D-H---A	D-H (Å)	H $\cdots \mathrm{A}(\AA)$	D \cdots (${ }_{\text {(}}$)	$<\mathrm{D}-\mathrm{H} \cdots \mathrm{A}\left({ }^{\circ}\right)$	Symmetry
1	N4-H4N \cdots. 020	0.84	2.20(6)	2.985(8)	157.0	$-\mathrm{x}+1, \mathrm{y}+1 / 2,-\mathrm{z}+1$
	N6-H6N...021	0.83	2.17(6)	2.980 (9)	164.0	-
	C11-H11 $\cdots 010$	0.93	2.46	3.069(7)	122.9	-
	C12-H12 $\cdots 000$	0.93	2.37	3.144(9)	140.1	$-\mathrm{x}+1, \mathrm{y}+1 / 2,-\mathrm{z}+1$
	C23-H23 \cdots-012	0.93	2.24	2.801(8)	118.2	-
	C32-H32 \cdots O21	0.93	2.36	3.142(10)	141.5	-
	C56-H56 \cdots O23	0.93	2.27	2.848(8)	119.6	-
	C60-H60 \cdots. 09	0.93	2.45	3.058(8)	123.4	-
2	C9-H9...02	0.95	2.47	3.041(7)	118.1	$-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$
	C10-H10...06	0.95	2.26	2.841(7)	118.5	$-\mathrm{x}+3 / 2, \mathrm{y}+1 / 2,-\mathrm{z}+3 / 2$
	C12-H12 \cdots. 08	0.95	2.50	3.276(7)	138.8	$x+1 / 2,-y+3 / 2, z+1 / 2$
	C13-H13 \cdots. 01	0.95	2.37	2.887 (6)	113.7	-
	C24-H24...01	0.95	2.45	$2.937(6)$	111.6	$-\mathrm{x}+3 / 2, \mathrm{y}+1 / 2,-\mathrm{z}+1 / 2$
	C24-H24*.04	0.95	2.51	$3.230(7)$	132.5	$x-1 / 2,-y+3 / 2, z-1 / 2$
	C26-H26 \cdots. 05	0.95	2.26	2.851(7)	119.8	-

Table S2: Selected bond distances (\AA) and angles $\left({ }^{\circ}\right)$ for compounds $\mathbf{1}$ and 2.

	Bond distances		$\begin{gathered} \text { Bond } \\ \text { angles } \end{gathered}$		Bond angles
1					
Zn1-01	2.031(3)	<N5-Zn1-O2	104.78(18)	<O22-Zn2-N3	104.12(18)
Zn1-02	2.019(4)	<N5-Zn1-01	104.13(16)	<022-Zn2-03	89.12(17)
Zn2-03	2.034(3)	<02-Zn1-01	88.99(16)	<N3-Zn2-03	103.86(15)

Zn1-04	2.044(3)	<N5-Zn1-04	96.65(15)	<022-Zn2-05	89.63(15)
Zn1-09	2.080(4)	<02-Zn1-04	89.38(15)	<N3-Zn2-05	97.82(15)
Zn1-N5	2.010(4)	<01-Zn1-04	158.87(15)	<03-Zn2-05	157.91(16)
Zn2-05	2.044(3)	<N5-Zn1-09	96.7(2)	<022-Zn2-010	158.14(15)
Zn2-010	2.084(4)	<02-Zn1-09	158.42(15)	<N3-Zn2-010	97.72(19)
Zn2-022	2.026(4)	<01-Zn1-09	87.40(16)	<03-Zn2-010	86.47(17)
Zn2-N3	2.025(5)	<04-Zn1-09	86.42(17)	<05-Zn2-010	86.53(16)
Zn1-Zn2	2.9936(5)				
2					
Cu1-N1	2.004(4)	<01-Cu1-03	157.35(16)	<01-Cu1-02	116.82(15)
Cu1-N3	2.020(4)	<01-Cu1-N1	88.00(16)	<03-Cu1-02	85.66(14)
Cu1-01	1.961(3)	<03-Cu1-N1	90.83(16)	<N1-Cu1-02	86.54(16)
Cu1-02	2.342(4)	<01-Cu1-N3	91.84(16)	<N3-Cu1-O2	90.42(16)
Cu1-03	1.967(3)	<03-Cu1-N3	90.67 (17)		
		<N1-Cu1-N3	176.50(18)		

