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Experimental Section 

Synthesis of methyl 4-(chlorocarbonyl)benzoate

Synthesis of P1

Thionyl chloride (10 mL) was added to a methanolic solution (60 mL) of terephthalic acid 

(H2DA) (2.0 g, 60.19 mmol) and the suspension was refluxed overnight. The solvent was 

distilled off and the mixture was extracted with diethyl ether (3×50 mL). It was then dried over 

sodium sulfate. Rotary evaporated of the solvent gave the diester P1 as pure colourless solid. 

Yield: 60 %. 1H-NMR (300 MHz, CDCl3, δ ppm): 8.08 (s, 4H, HAr), 3.93 (s, 6H, -OCH3); 13C-

NMR (75.45 MHz, CDCl3, δ ppm): 166.26, 133.88, 129.54, 52.43. 

Synthesis of P2

To a methanolic solution of P1 (1 g, 5.16 mmol) was added solid potassium hydroxide (0.290 g, 

5.18 mmol) and the reaction mixture was heated to reflux overnight. Removal of the solvent to 

dryness under reduced pressure in a rotary evaporator afforded a white crystalline material. The 
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mixture was then dissolved in water, washed several times with dichlormethane, and acidified 

with conc. HCl to pH  1 upon which a white solid precipitated out. The precipitate thus obtained 

was dissolved in diethyl ether and dried over magnesium sulfate. Removal of the solvent 

afforded the desired product P2 as a white solid. Yield: 82 %. 1H-NMR (300 MHz, DMSO-d6, δ 

ppm): 8.06 (s, 4H, HAr), 3.88 (s, 3H, -O-CH3); 13C-NMR (75.45 MHz, DMSO-d6, δ ppm): 

167.13, 165.83, 135.28, 133.22, 129.89, 129.34, 52.61. 

Synthesis of P3

P2 (1.0 g, 5.56 mmol) and a catalytic amount of N,N-dimethylformide were heated to reflux in 

thionyl chloride (20 mL) overnight. Then, the thionyl chloride was distilled off and the resulting 

solid was redissolved in dichloromethane (60 mL), washed several times with water, and dried 

using anhydrous Na2SO4. Decantation and concentration to dryness under vacuum led to the 

desired product P3 as an off white solid. Yield: 91%. 1H-NMR (300 MHz, CDCl3, δ ppm): 8.19 

(s, 4H, HAr), 3.99 (s, 3H, -O-CH3), 13C-NMR (75.45 MHz, CDCl3, δ ppm): 168.16, 165.45, 

136.62, 135.57, 130.98, 129.33, 52.60.

          Fig. S1. 1H NMR of P1 recorded in CDCl3.
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        Fig. S2. 13C NMR of P1 recorded in CDCl3.

        Fig. S3. 1H NMR of P2 recorded in DMSO-d6.
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           Fig. S4. 13C NMR of P2 recorded in DMSO-d6.

            Fig. S5. 1H NMR of P3 recorded in CDCl3.
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           Fig. S6. 13C NMR of P3 recorded in CDCl3.

           Fig. S7. 1H NMR of MeL recorded in DMSO-d6.
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         Fig. S8. 13C NMR of MeL recorded in DMSO-d6.

         Fig. S9. 1H NMR of HL recorded in DMSO-d6.
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         Fig. S10. 13C NMR of HL recorded in DMSO-d6.

Thermogravimetric analyses

In order to get an insight into the thermal stability and structural variation of frameworks 1 and 2 

as a function of temperature, thermogravimetric analysis (TGA) was carried out under dinitrogen 

in the 30-700 °C range at a heating rate of 10 ˚C min-1 (Fig. S11). Compound 1 with a 2D net 

exhibits the loss of two non-coordinated DMF molecules at 89-343 ºC with an observed weight 

loss of 15.4 % (calculated = 15.8 %). Above 350 ºC, the polymeric structure disintegrates 

leading to the formation of ZnO (Fig. S11).

The TGA analysis of framework 2 (Fig. S11) exhibits a weight loss of 35.8 % (calculated = 36.2 

%) in the 75-325 ˚C temperature range, corresponding to the loss of four DMF and one water 

molecules. After this, the remaining material decomposes gradually leading to the formation of 

CuO.



S9

                                     Fig S11. Thermogravimetric curves for 1 and 2.

            Fig. S12. FT-IR spectra of HL, 1 and 2.
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Fig. S13. Example of integration in the 1H-NMR spectrum for the determination of Henry 

reaction products (Table 1, entry 5).

Calculation of the yield and selectivity for complex 1 in the Henry reaction:

Yield: 

Total amount of compounds 

p-nitrobenzaldehyde + anti + syn = 1 + 3.50 + 9.99 = 14.49

Percentage of the unreacted aldehyde: (1/14.49) × 100 = 7%

Yield of -nitroalkanols = 100 - 7 = 93% 

Yield of syn = (9.99/14.49) 100 = 69%

Yield of anti = (3.5/14.49) 100 = 24%

Selectivity:

(syn +anti) = 69 + 24 = 93 (100%). 

Selectivity of syn = (69 /93)  100 = 74%

Selectivity of anti  = (24 /93) 100=26%
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Fig. S14. Example of integration in the 1H-NMR spectrum for the determination of Henry 

reaction products (Table 1, entry 5).

Calculation of the yield and selectivity for complex 2 in the Henry reaction:

Yield: 

Total amount of compounds:

p-nitrobenzaldehyde + anti + syn = 1 + 3.07 + 5.67 = 9.74

Percentage of the unreacted aldehyde: (1/9.74) × 100 = 10%

Yield of -nitroalkanols = 100 - 10 = 90% 

Yield of syn = (5.67/9.74) 100 = 58%

Yield of anti = (3.07/9.74) 100 = 31%

Selectivity:

(syn +anti) = 58 + 31 = 89 (100%). 

Selectivity of syn = (58 /89)  100 = 65%

Selectivity of anti  = (31/89) 100 = 35%
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  Fig. S15. FT-IR spectra of 1 and 2 recorded before and after the catalytic reaction.

               

Fig. S16. Powder XRD of 1 and 2 recorded before and after the catalytic reaction.
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Table S1: Hydrogen bond geometry (Å, °) in compounds 1 and 2.
Compound D-H---A D-H (Å)      H∙∙∙A (Å) D∙∙∙A (Å) <D−H∙∙∙A(°) Symmetry

N4-H4N····O20  0.84 2.20(6) 2.985(8) 157.0 -x+1, y+1/2, -z+1

N6-H6N····O21  0.83 2.17(6) 2.980(9) 164.0 -

C11-H11····O10  0.93 2.46 3.069(7) 122.9 -

C12-H12····O20  0.93 2.37 3.144(9) 140.1 -x+1, y+1/2, -z+1

C23-H23····O12  0.93 2.24 2.801(8) 118.2 -

C32-H32····O21  0.93 2.36 3.142(10) 141.5 -

C56-H56····O23  0.93 2.27 2.848(8) 119.6 -

1

C60-H60····O9  0.93 2.45 3.058(8) 123.4 -

C9-H9····O2 0.95 2.47 3.041(7) 118.1 -x+1, -y+1, -z+1

C10-H10····O6  0.95 2.26 2.841(7) 118.5 -x+3/2, y+1/2, -z+3/2

C12-H12····O8  0.95 2.50 3. 276(7) 138.8 x+1/2, -y+3/2, z+1/2

C13-H13····O1 0.95 2.37 2.887(6) 113.7 -

C24-H24····O1 0.95 2.45 2.937(6) 111.6 -x+3/2, y+1/2, -z+1/2

C24-H24····O4 0.95 2.51 3.230(7) 132.5 x-1/2, -y+3/2, z-1/2

2

C26-H26····O5  0.95 2.26 2.851(7) 119.8 -

Table S2: Selected bond distances (Å) and angles (°) for compounds 1 and 2.

Bond 
distances

Bond 
angles

Bond angles

1

Zn1-O1 2.031(3) <N5-Zn1-O2 104.78(18) <O22-Zn2-N3 104.12(18)

Zn1-O2 2.019(4) <N5-Zn1-O1 104.13(16) <O22-Zn2-O3 89.12(17)

Zn2-O3 2.034(3) <O2-Zn1-O1 88.99(16) <N3-Zn2-O3 103.86(15)
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Zn1-O4 2.044(3) <N5-Zn1-O4 96.65(15) <O22-Zn2-O5 89.63(15)

Zn1-O9 2.080(4) <O2-Zn1-O4 89.38(15) <N3-Zn2-O5 97.82(15)

Zn1-N5 2.010(4) <O1-Zn1-O4 158.87(15) <O3-Zn2-O5 157.91(16)

Zn2-O5 2.044(3) <N5-Zn1-O9 96.7(2) <O22-Zn2-O10 158.14(15)

Zn2-O10 2.084(4) <O2-Zn1-O9 158.42(15) <N3-Zn2-O10 97.72(19)

Zn2-O22 2.026(4) <O1-Zn1-O9 87.40(16) <O3-Zn2-O10 86.47(17)

Zn2-N3 2.025(5) <O4-Zn1-O9 86.42(17) <O5-Zn2-O10 86.53(16)

Zn1-Zn2 2.9936(5)

2

Cu1-N1 2.004(4) <O1-Cu1-O3 157.35(16) <O1-Cu1-O2 116.82(15)

Cu1-N3 2.020(4) <O1-Cu1-N1 88.00(16) <O3-Cu1-O2 85.66(14)

Cu1-O1 1.961(3) <O3-Cu1-N1 90.83(16) <N1-Cu1-O2 86.54(16)

Cu1-O2 2.342(4) <O1-Cu1-N3 91.84(16) <N3-Cu1-O2 90.42(16)

Cu1-O3 1.967(3) <O3-Cu1-N3 90.67 (17)

<N1-Cu1-N3 176.50(18)


