Electronic Supplementary Information (ESI) Enhancing Effect of Bisulfite on Sequestration of Selenite by Zerovalent Iron

Jinxiang Li,^{a‡} Chao Wang,^{a‡} Junlian Qiao,^{*a} Hejie Qin^{ab} and Lina Li^b

^aState Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China

^bShanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics,

Chinese Academy of Sciences, Shanghai 201204, People's Republic of China

[‡]Authors contributed equally to this work.

E-mail addresses: ljx870616@126.com (J.X. Li), wangchao962@163.com (C. Wang), qiaoqiao@tongji.edu.cn (J.L. Qiao), chinhj@foxmail.com (H.J. Qin), lilina@sinap.ac.cn (L.N. Li)

*Author to whom correspondence should be addressed Junlian Qiao, email: qiaoqiao@tongji.edu.cn; phone: +86-021-65489163 Number of pages (including this page): 11

Number of Figures: 7

Summary

- Figure S1. SEM (a), particle size distribution (b) and Raman spectra (c) of the pristine ZVI employed in this study. (Page S4)
- Figure S2. The effect of HSO_3^- on the transformation of Se(IV). Reaction conditions: $[Se(IV)]_0 = 10.0 \text{ mg L}^{-1}, [HSO_3^-]_0 = 2.0 \text{ mM}, [pH]_{ini} = 5.0, V_{air} = 2.0 \text{ mL}.$ (Page S5)
- Figure S3. Correlation of Se(IV) removal rate with the headspace (V_{air}) in the presence of SO₄²⁻. Reaction conditions: $[Fe^0] = 2.0 \text{ mM}$, $[Se(IV)]_0 = 10.0 \text{ mg } \text{L}^{-1}$, $[SO_4^{2-}]_0 = 2.0 \text{ mM}$, $pH_{ini} = 5.0$. (Page S6)
- Figure S4. Correlation of Se(IV) removal rate with the headspace (V_{air}) in the presence of HSO₃⁻. Reaction conditions: $[Fe^0] = 2.0 \text{ mM}$, $[Se(IV)]_0 = 10.0 \text{ mg } \text{L}^{-1}$, $[\text{HSO}_3^{-1}]_0 = 2.0 \text{ mM}$, $pH_{ini} = 5.0$. (Page S7)
- Figure S5. SEM images of the Se(IV)-treated ZVI corrosion products with the presence of SO_4^{2-} or HSO_3^{-} at different reaction time. Reaction conditions: $[Fe^0] = 2.0 \text{ mM}$, $[Se(IV)]_0 = 10.0 \text{ mg } \text{L}^{-1}$, $[SO_4^{2-}/HSO_3^{--}]_0 = 2.0 \text{ mM}$, $pH_{ini} = 5.0$, $V_{air} = 2.0 \text{ mL}$. (Page S8)
- Figure S6. Theoretical calculation of the distribution of Se(IV) at variable pH. (Page S9)
- Figure S7. Variations in dissolved Fe(II) and pH during Se(IV) removal by ZVI at various pH_{ini} levels. Reaction conditions: [Fe⁰] = 2.0 mM, [Se(IV)]₀ = 10.0 mg L⁻¹, [HSO₃⁻/SO₄²⁻]₀ = 2.0 mM, V_{air} = 2.0 mL. (Page S10)
- Table S1. Speciation of Fe in Se(IV)-treated ZVI corrosion products based on LCF of

Fe k^3 -weighted EXAFS spectra (Data were given as % values). (Page S11)

ure S1. SEM (a), particle size distribution (b) and XRD (c) of the pristine ZVI

employed in this study.

Figure S2. The effect of HSO_3^- on the transformation of Se(IV). Reaction conditions: [Se(IV)]₀ = 10.0 mg L⁻¹, [HSO₃⁻]₀ = 2.0 mM, [pH]_{ini} = 5.0, V_{air} = 2.0 mL.

Figure S3. Correlation of Se(IV) removal rate with the headspace (V_{air}) in the presence of SO₄²⁻. Reaction conditions: [Fe⁰] = 2.0 mM, [Se(IV)]₀ = 10.0 mg L⁻¹,

 $[SO_4^{2-}]_0 = 2.0 \text{ mM}, \text{ pH}_{\text{ini}} = 5.0.$

Figure S4. Correlation of Se(IV) removal rate with the headspace (V_{air}) in the presence of HSO₃⁻. Reaction conditions: [Fe⁰] = 2.0 mM, [Se(IV)]₀ = 10.0 mg L⁻¹,

 $[HSO_3]_0 = 2.0 \text{ mM}, \text{ pH}_{ini} = 5.0.$

Figure S5. SEM images of the Se(IV)-treated ZVI corrosion products with the presence of SO₄²⁻ or HSO₃⁻ at different reaction time. Reaction conditions: $[Fe^0] = 2.0$ mM, $[Se(IV)]_0 = 10.0$ mg L⁻¹, $[SO_4^{2-}/HSO_3^{--}]_0 = 2.0$ mM, $pH_{ini} = 5.0$, $V_{air} = 2.0$ mL.

Figure S6. Theoretical calculation of the distribution of Se(IV) at variable pH.

Figure S7. Variations in dissolved Fe(II) and pH during Se(IV) removal by ZVI at various pH_{ini} levels. Reaction conditions: $[Fe^0] = 2.0$ mM, $[Se(IV)]_0 = 10.0$ mg L⁻¹,

 $[HSO_3^{-}/SO_4^{2-}]_0 = 2.0 \text{ mM}, \text{ V}_{air} = 2.0 \text{ mL}.$

Sample ID	Material References						
	Fe ⁰	Wustite	Magnetite	Ferrihydrite	Lepidocrocite	Goethite	Maghemite
w/ SO42-	19.1	20.4	43.0	9.5	8.0		
w/ HSO3-	5.4	8.2	57.7		19.4		9.3

Table S1. Speciation of Fe in Se(IV)-treated ZVI corrosion products based on LCF ofFe k^3 -weighted EXAFS spectra (Data were given as % values).