Electronic Supplementary Information (ESI)

Insight into the structural stability of Coumestrol with Human Estrogen

Receptor α and β subtypes: A combined approach involving docking and

molecular dynamics simulation studies

Atif Zafar¹[#], Sabahuddin Ahmad²[#], Imrana Naseem¹*

¹ Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India

² Department of Computer Science, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India

[#] Co-first authors, ^{*}Corresponding author: imrananaseem2009@gmail.com

Table S1 AutoDock analysis of docked coumestrol with ERβ protein without removing active site water molecule

AutoDock Parameter	Coumestrol-ERß
Binding energy (kcal/mol)	-9.0
Inhibition constant (nM)	253.57
Intermolecular energy	-9.57
Van der Waals H-bond desolvation energy	-8.97
AutoDock refRMS	35.21
No. of Hydrogen bonds	5
Residues involved in hydrogen bonding	Glu305, Leu339, Arg346, Gly472, His475

Fig. S1 Binding modes of coumestrol docked into human ERβ binding site without removing active site water molecule. Coumestrol forms 5 hydrogen bonds with ERβ residues. Water molecule in ERβ system is represented by red '*'.

Fig. S2 Detailed interaction view of coumestrol with human ER β (with active site water molecule) by Ligplot.

Fig. S3 Backbone RMSD plots of coumestrol-ERβ complex during MD simulation at 300 K. Black colour RMSD plot indicates coumestrol-ERβ complex (with active site water molecule) and red colour RMSD plot indicates coumestrol-ERβ complex (without active site water molecule).

Fig. S4 RMSF of backbone atoms of Apo-ER β and coumestrol-ER β complex with active site water molecule at 300 K.

Fig. S5 Potential energy plots of coumestrol-ER β complex with (shown in black) and without (shown in red) the active site water molecule during MD simulations.

Fig. S6 Total energy plots of coumestrol-ER β complex with (shown in black) and without (shown in red) the active site water molecule during MD simulations.

Fig. S7 Interaction energy plot for 2 ns MD simulation of coumestrol-ER β complex with active site water molecule.

Fig. S8 Variation of gyration radius (R_g) of ER β backbone atoms calculated as a function of time for coumestrol-ER β complex with (shown in black) and without (shown in red) the active site water molecule.

Fig. S9 Solvent accessible surface area (SASA) during 2 ns simulations calculated from trajectory files for coumestrol-ER β complex with (shown in black) and without (shown in red) the active site water molecule.

Fig. S10 Stability evaluation of coumestrol-ER β complex (with active site water molecule) using intermolecular hydrogen bonding pattern as a function of time.

Fig. S11 2D projection of the backbone atoms of coumestrol-ER β system with active site water molecule over the first two principal components.

Fig. S12 Secondary structure elements changes during the 2 ns MD simulation at 300 K. (A) Apo-ERβ with active site water molecule and (B) cournestrol-ERβ complex with active site water molecule. The colour scale at the bottom represents the DSSP classification of each secondary structure element.