A molecular cobalt catalyst supported by an aminebis(phenolate) ligand for both electrolytic and photolytic water reduction

Ling-Zhi Fu, Ling-Ling Zhou and Shu-Zhong Zhan*

College of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.

Supplementary Materials

Table of context

1	Fig. S1. The UV spectra of complex 1 and the related compounds in MeCN.
2	Fig. S2. The UV spectrum of 0.10 mM complex 1 in water.
3	Fig. S3. The UV spectra of 0.10 mM complex 1 in 0.25 M phosphate buffered solutions at different pHs.
4	Fig. S4. Scan rate dependence of precatalytic waves at $-1.58 \text{ V} (\text{Co}^{II/I})$ and 0.80 V (Co ^{III/II}) for a 0.25 mM solution of complex 1 (0.10 M [n-Bu ₄ N]ClO ₄), at scan rates from 100 to 250 mV/s.
5	Fig. S5 . CV of ligand (23 μ M). Conditions: 0.10 M [n-Bu ₄ N]ClO ₄ as supporting electrolyte, scan rate: 100 mV/s, glassy carbon working electrode (1 mm diameter), Pt counter electrode, Ag/AgNO ₃ reference electrode.
6	Fig. S6 . CV of $CoCl_2 \cdot 6H_2O$ (23 µM). Conditions: 0.10 M [n-Bu ₄ N]ClO ₄ as supporting electrolyte, scan rate: 100 mV/s, glassy carbon working electrode (1 mm diameter), Pt counter electrode, Ag/AgNO ₃ reference electrode.
7	Fig. S7 . CV of the mixture of $CoCl_2 \cdot 6H_2O(23 \ \mu M) + ligand (23 \ \mu M)$. Conditions: 0.10 M [n-Bu ₄ N]ClO ₄ as supporting electrolyte, scan rate: 100 mV/s, glassy carbon working electrode (1 mm diameter), Pt counter electrode, Ag/AgNO ₃ reference electrode.

8	Fig. S8. GC traces after a 2-h controlled-potential electrolysis at -1.45 V vs Ag/AgCl of 4.0 μ M complex 1 in DMF with 3.4 mM acid. A standard of CH ₄ was added for calibration purposes.
9	Fig. S9. Turnover frequency (mol H_2 /mol catalysts/h) for electrocatalystic hydrogen production by complex 1 (0.25 μ M) under a series of overpotentials.
10	Fig. S10. (a) GC traces after a 1-h controlled-potential electrolysis at -1.45 V vs Ag/AgCl of 2.0 μ M complex 1 in 0.25 M phosphate buffer, pH 7.0. A standard of CH ₄ was added for calibration purposes. (b) Measured (black) and calculated (red) pH changes assuming a 100% Faradic efficiency of complex 1 during electrolysis. (the theoretical pH change over time can be calculated by ΣIt
	the equation of $pH = 14 + \lg \frac{\sum It}{FV}$ where I = current (A), t = time (s), F =
	Faraday constant (96485 C/mol), $V =$ solution volume (0.04 L)).
11	Fig. S11. Turnover frequency (mol H_2 /mol catalysts/h) for electrocatalystic hydrogen production by complex 1 (2.0 μ M) under a series of overpotentials (mV) at pH 7.0.
12	Fig. S12. EDS of a glassy carbon electrode after 3 h electrolysis. There was no significant change in the EDS after a 3 h electrolysis period.
13	Fig. S13. (a) Extended controlled potential electrolysis of 4.5 μ M complex 1, showing charge buildup versus time with an applied potential of -1.45 V versus Ag/AgCl. (b) Catalytic current obtained upon controlled potential electrolysis with 4.5 μ M complex 1. Conditions: 0.25 M buffer solution, pH 7.0, GC working electrode (1.25 cm ²), Ag/AgCl in saturated KCl reference electrode, Pt wire counter electrode, 60 h.
14	Fig. S14. Effect of pHs on different photocatalytic systems, containing 0.70 mM Ru(bpy) ₃ Cl ₂ , 0.08 M ascorbic acid and 0.10 mM complex 1 , under air.
15	Fig. S15. Effect of addition of $Ru(bpy)_3Cl_2$ on different photocatalytic systems, containing 0.15 M ascorbic acid and 0.10 mM complex 1 at pH 6.0.
16	Fig. S16. Effect of addition of ascorbic acid on different photocatalytic systems, containing $0.70 \text{ mM Ru}(\text{bpy})_3\text{Cl}_2$ and 0.10 mM 1 , at pH 6.0.
17	Fig. S17. Hydrogen evolution kinetics obtained upon continuous visible irradiation ($\lambda = 469$ nm) of 1.0 M buffer pH 6.0 solutions (4 mL) containing 0.90 mM Ru(bpy) ₃ Cl ₂ , 0.15 M ascorbic acid, and 1 at 0.02 mM (a), 0.05 mM (b), and 0.10 mM (c) concentration.
18	Fig. S18 . Hydrogen evolution obtained upon continuous visible irradiation ($\lambda = 469 \text{ nm}$) of pH 6.0 solutions (4 mL) containing 0.90 mM Ru(bpy) ₃ Cl ₂ , 0.15 M ascorbic acid, and 0.10 mM complex 1 under Ar (black trace), and air (red trace).
L	1

19	Fig. S19 . Hydrogen evolution obtained upon visible irradiation ($\lambda = 469$ nm) of pH 6.0 solutions for 2 h, containing 0.30 mM Ru(bpy) ₃ Cl ₂ and 0.10 mM complex 1 (black), 0.30 mM Ru(bpy) ₃ Cl ₂ and 0.15 M ascorbic acid (blue), and 0.15 M ascorbic acid and 0.10 mM complex 1 (red).
20	Fig. S20. IR spectrum of complex 1
21	Eq. S1. The calculation of TOF (DMF)
22	Eq. S2. The calculation of TOF (Buffer, pH 7.0)
23	Table S1. Crystallographic data for 1
24	Table S2. The selected bond distances for complex 1
25	Table S3. The selected bond angles for complex 1

Fig. S1.The UV spectra of complex 1 and the related compounds in MeCN.

Fig. S2.The UV spectrum of 0.10 mM complex 1 in water.

Fig. S3. The UV spectra of 0.10 mM complex 1 in 0.25 M phosphate buffered solutions at different pHs.

Fig. S4. Scan rate dependence of precatalytic waves at -1.58 V ($Co^{II/I}$) and 0.80 V ($Co^{III/II}$) for a 0.25 mM solution of complex 1 (0.10 M [n-Bu₄N]ClO₄), at scan rates from 100 to 250 mV/s.

Fig. S5. CV of ligand (23 μ M). Conditions: 0.10 M [n-Bu₄N]ClO₄ as supporting electrolyte, scan rate: 100 mV/s, glassy carbon working electrode (1 mm diameter), Pt counter electrode, Ag/AgNO₃ reference electrode.

Fig. S6. CV of $CoCl_2 \cdot 6H_2O$ (23 µM). Conditions: 0.10 M [n-Bu₄N]ClO₄ as supporting electrolyte, scan rate: 100 mV/s, glassy carbon working electrode (1 mm diameter), Pt counter electrode, Ag/AgNO₃ reference electrode.

Fig. S7. CV of the mixture of $CoCl_2 \cdot 6H_2O(23 \ \mu M) + ligand (23 \ \mu M)$. Conditions: 0.10 M [n-Bu₄N]ClO₄ as supporting electrolyte, scan rate: 100 mV/s, glassy carbon working electrode (1 mm diameter), Pt counter electrode, Ag/AgNO₃ reference electrode.

Fig. S8. GC traces after a 2-h controlled-potential electrolysis at -1.45 V vs Ag/AgCl of 4.0 μ M complex 1 in DMF with 3.4 mM acid. A standard of CH₄ was added for calibration purposes.

Fig. S9. Turnover frequency (mol H_2 /mol catalysts/h) for electrocatalystic hydrogen production by complex 1 (0.25 μ M) under a series of overpotentials.

Fig. S10. (a) GC traces after a 1-h controlled-potential electrolysis at -1.45 V vs Ag/AgCl of 2.0 μ M complex 1 in 0.25 M phosphate buffer, pH 7.0. A standard of CH₄ was added for calibration purposes. (b) Measured (black) and calculated (red) pH changes assuming a 100% Faradic efficiency of complex 1 during electrolysis. (the theoretical pH change over time can be calculated by the equation of

$$pH = 14 + \lg \frac{\sum It}{FV}$$
 where I = current (A), t = time (s), F = Faraday constant (96485)

C/mol), V = solution volume (0.04 L)).

Fig. S11. Turnover frequency (mol H_2 /mol catalysts/h) for electrocatalystic hydrogen production by complex 1 (2.0 μ M) under a series of overpotentials (mV) at pH 7.0.

Fig. S12. EDS of a glassy carbon electrode after 3 h electrolysis. There was no significant change in the EDS after a 3 h electrolysis period.

Fig. S13. (a) Extended controlled potential electrolysis of 4.5 μ M complex 1, showing charge buildup versus time with an applied potential of -1.45 V versus Ag/AgCl. (b) Catalytic current obtained upon controlled potential electrolysis with 4.5 μ M complex 1. Conditions: 0.25 M buffer solution, pH 7.0, GC working electrode (1.25 cm²), Ag/AgCl in saturated KCl reference electrode, Pt wire counter electrode, 60 h.

Fig. S14. Effect of pHs on different photocatalytic systems, containing 0.70 mM $Ru(bpy)_3Cl_2$, 0.08 M ascorbic acid and 0.10 mM complex 1, under air.

Fig. S15. Effect of addition of $Ru(bpy)_3Cl_2$ on different photocatalytic systems, containing 0.15 M ascorbic acid and 0.10 mM complex 1 at pH 6.0.

Fig. S16. Effect of addition of ascorbic acid on different photocatalytic systems, containing $0.70 \text{ mM Ru}(\text{bpy})_3\text{Cl}_2$ and 0.10 mM**1**, at pH 6.0.

Fig. S17. Hydrogen evolution kinetics obtained upon continuous visible irradiation (λ = 469 nm) of 1.0 M buffer pH 6.0 solutions (4 mL) containing 0.90 mM Ru(bpy)₃Cl₂, 0.15 M ascorbic acid, and 1 at 0.02 mM (a), 0.05 mM (b), and 0.10 mM (c) concentration.

Fig. S18. Hydrogen evolution obtained upon continuous visible irradiation ($\lambda = 469$ nm) of pH 6.0 solutions (4 mL) containing 0.90 mM Ru(bpy)₃Cl₂, 0.15 M ascorbic acid, and 0.10 mM complex 1 under Ar (black trace), and air (red trace).

Fig. S19. Hydrogen evolution obtained upon visible irradiation ($\lambda = 469$ nm) of pH 6.0 solutions for 2 h, containing 0.30 mM Ru(bpy)₃Cl₂ and 0.10 mM complex **1** (black), 0.30 mM Ru(bpy)₃Cl₂ and 0.15 M ascorbic acid (blue), and 0.15 M ascorbic acid and 0.10 mM complex **1** (red).

Page 1/1 Fig. S20. IR spectrum of complex 1.

$$TOF = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{11.3016mC \times 3600}{96480C \cdot mol^{-1} \times 2 \times 0.084 \times 10^{-6} \, mol \times 120} = 20.79 h^{-1}$$

Fig. S1. The calculation of TOF (DMF)

$$TOF = \frac{\Delta C}{F \cdot n_1 \cdot n_2 \cdot t} = \frac{0.4294C \times 3600}{96480C \cdot mol^{-1} \times 2 \times 0.08 \times 10^{-6} \, mol \times 120} = 789.6 h^{-1}$$

• • •	
Empirical formula	$C_{25}H_{26}N_2O_4Cl_5Co$
Formula weight	654.66
Temperature/K	296.15
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	14.659(3)
b/Å	20.200(4)
c/Å	9.5832(18)
α/°	90.00
β/°	100.056(4)
$\gamma/^{\circ}$	90.00
Volume/Å ³	2794.1(9)
Z	4
$\rho_{calc}g/cm^3$	1.556
µ/mm ⁻¹	1.127
F(000)	1336.0
Crystal size/mm ³	0.3 imes 0.2 imes 0.2
Radiation	MoK α ($\lambda = 0.71073$)
20 range for data collection/°	5.14 to 50.06
Index ranges	$-10 \le h \le 17, -24 \le k \le 21, -11 \le l \le 11$
Reflections collected	15110
Independent reflections	4932 [$R_{int} = 0.0364$, $R_{sigma} = 0.0430$]
Data/restraints/parameters	4932/0/336
Goodness-of-fit on F ²	1.072
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0660, wR_2 = 0.2023$
Final R indexes [all data]	$R_1 = 0.0893, wR_2 = 0.2243$
Largest diff. peak/hole / e Å-3	0.56/-1.72

 Table S1. Crystallographic data for 1

Table S2. The selected bond distances for complex 1

Bond distances (Å)							
Co1-Co1 ¹	2.9084(14)	Co1-N9	1.905(4)				
Co1-O6	1.913(4)	Co1- N13	1.972(4)				
Co1-O8	1.906(4)	Col-Cll	1.909(4)				
Co1-Cl1 ¹	1.916(4)						

 Table S3. The selected bond Angles for complex 1

Bond Angles(°)						
O8-Co1-O6	87.01(16)	Cl11-Co1-Co11	40.42(12)			
O8-Co1-Cl1 ¹	171.89(16)	Cl1-Co1-Co1 ¹	40.60(12)			
O8-Co1-Cl1	91.07(16)	Cl1-Co1-O6	89.02(17)			
N9-Co1-Co1 ¹	93.20(13)	Cl1-Co1-N13	93.08(17)			
Col Cll Col	98.98(17)	Cl1-Co1-Cl1 ¹	81.02(17)			