RSC Advances

Electronic Supplementary Information

Tuning SEI formation on nanoporous carbon-titania composite sodium ion batteries anodes and performance with subtle processing changes

Accepted 00th January 20xx DOI: 10.1039/x0xx00000x

Received 00th January 20xx,

www.rsc.org/

Jeongwoo Lee^a, Yu-Ming Chen^b, Yu Zhu^b, and Bryan D. Vogt^{a,*}

^a. Department of Polymer Engineering, University of Akron, Akron, OH 44325.
^b. Department of Polymer Science, University of Akron, Akron, OH 44325.
* To whom correspondence should be addressed: vogt@uakron.edu

Figure S1 illustrates the morphology of the porous carbon/TiO₂ composite fabricated using 0.35 g PHEMA/0.3 g FA/0.3 g TiO₂ as a function of molecular weight of PHEMA (20K, 300K, and 1000K). The pores of the carbon/TiO₂ composite are significantly larger for the composite produced using 20K PHEMA (Figure S1A) than the carbon/TiO₂ composites from 300K (Figure S1B) and 1000K PHEMA (Figure S1C). The morphology of porous carbon/TiO₂ composites pyrolyzed from PHEMA/FA/TiO₂ appears to be controlled by the mobility of the precursor suspension that decreases as the molecular weight of PHEMA increases. Additionally, agglomeration of the TiO₂ nanoparticles increases as the molecular weight of PHEMA increases.

Figure S1. TEM micrographs of porous carbon/TiO₂ composites fabricated with (A) 20K, (B) 300K, and (C) 1000K PHEMA using 0.35 g PHEMA /0.3 g FA/0.3 g TiO₂ for the precursor.

Figure S2. Viscosity variation of FA/PHEMA solutions with different molecular weight of PHEMA during FA polymerization.

Figure S3.Galvanostatic charge/discharge behavior of carbon/TiO₂ composites from 20K pf PHEMA in a potential range of 0.01–2.0 V at a current density of 10 mA/g.

Figure S4. Galvanostatic charge/discharge behavior of (A) TiO_2 and (B) carbon/ TiO_2 composites from 20K of PHEMA and 0.3 g of FA in a potential range of 0.01–2.0 V at a current density of 10 mA/g.

Figure S5. XRD profiles for the neat TiO_2 and carbon/ TiO_2 composite produced by carbonization of PHBMA/PFA polymer blend with TiO_2 and the standard spectrum of anatase TiO_2 (JCPDS 84–1286, red lines) and rutile TiO2 (JCPDS 75-1753, blue lines).

The XRD in Figure S5 illustrates that the carbonized composite still contains anatase TiO_2 nanoparticles with strong diffraction peaks at ~26° and ~48°. These peaks are in good agreement with the standard spectrum for anatase (JCPDS no.: 84–1286). Although the content of rutile TiO₂ increases from 1.7 % to 10.4 % after carbonization of PFA/PHEMA/TiO₂ composite, over 91 % of anatase-TiO₂ remains without transformation. The Rutile TiO₂ has strong diffraction peaks at ~28°, ~36° and ~54° (JCPDS no.: 76-1940).

	C ₁	C ₂	Q ₁	Q ₂	
•	1	\neg		- -	- <u> FD</u>]•
κ _s					
	R ₁	R_2	$R_3 W_1$	$R_4 W_2$	

	$R_{s}(\Omega)$	$R_1(\Omega)$	$R_2(\Omega)$	$R_3(\Omega)$	$R_4(\Omega)$	$C_1(F)$	$C_2(F)$	$Q_1(S \cdot s^n)$	$Q_2(S \cdot s^n)$	$W_1 (S \cdot s^{1/2})$	$W_2 (S \cdot s^{1/2})$
PHEMA 20K	3 ± 0.5	174 ± 44	266 ± 40	86 ± 5	21 ± 3	(1.8 ± 1.8)	(9.4±2.4)	(3.0±2.9)	(2.1±2.1)	(3.8±0.5)	(2.1±2.1)
						$\times 10^{-1}$	$\times 10^{-6}$	× 10 ⁻⁴	× 10-3	$\times 10^{-2}$	$\times 10^{-4}$
PHEMA 300K	15 ± 0.2	339 ± 9	439 ± 16	465 ± 8	12 ± 3	(3.2 ± 0.3)	(8.8±0.4)	(2.7±0.1)	(1.8 ± 0.1)	(2.6 ± 0.8)	(2.7±1.7)
						× 10 ⁻⁵	$\times 10^{-6}$	$\times 10^{-4}$	$\times 10^{-2}$	$\times 10^{5}$	$\times 10^{-12}$
PHEMA 1000K	17 ± 7	336 ± 50	202 ± 30	394 ± 105	61 ± 27	(2.7 ± 1.3)	(3.2 ± 3.2)	(2.9 ± 2.0)	(1.9 ± 0.9)	(2.9 ± 0.8)	(5.0±3.8)
						× 10-5	$\times 10^{-6}$	× 10-3	× 10-4	× 10-2	$\times 10^{4}$
FA 0.2 g	10 ± 6	190 ± 49	229 ± 30	0.1 ± 0.01	21 ± 9	(6.4±0.6)	(2.8±1.2)	(5.2±4.0)	(3.0±2.0)	(1.8±0.2)	(3.3±3.1)
						$\times 10^{-4}$	× 10 ⁻⁵	× 10 ⁻¹²	× 10-3	$\times 10^{-2}$	× 10 ⁻²
FA 0.3 g	3 ± 0.5	174 ± 44	266 ± 40	86 ± 5	21 ± 3	(1.8 ± 1.8)	(9.4 ± 2.4)	(3.0 ± 2.9)	(2.1 ± 2.1)	(3.8±0.5)	(2.1±2.1)
						× 10 ⁻¹	$\times 10^{-6}$	× 10 ⁻⁴	× 10-3	$\times 10^{-2}$	× 10 ⁻⁴
FA 0.5 g	10 ± 0.2	180 ± 3	205 ± 7	134 ± 7	573 ± 16	(2.4±0.3)	(7.5±0.3)	(3.9±0.4)	(4.6±0.3)	(2.3±0.2)	(9.8±1.5)
						× 10 ⁻⁵	$\times 10^{-6}$	× 10 ⁻⁴	× 10-3	$\times 10^{-2}$	$\times 10^{4}$
FA 0.7 g	9 ± 3	190 ± 20	27 ± 23	154 ± 36	2 ± 0.2	(8.5±0.4)	(1.5±0.2)	(4.7±1.3)	(6.1 ± 1.0)	(5.4±4.6)	(2.1±2.1)
						$\times 10^{-6}$	× 10-5	$\times 10^{-4}$	× 10-3	$\times 10^{4}$	$\times 10^{9}$

Figure S6. Equivalent circuit to fit the EIS data of porous carbon/TiO₂ composite electrodes and numerical values of the equivalent circuit components obtained for the impedance data.

In Figure S6, R_S indicates the bulk resistance of electrolyte, separator, and electrode. These composite anode electrodes consist of carbon and TiO₂ particles. Therefore, it leads to two different SEIs (C₁//R₁ and C₂//R₂) on carbon and TiO₂ surfaces. The interfacial charge transfer, Na ion diffusion impedance, and double layer capacitance for carbon and TiO₂ are also considered individually, and thus they are presented by a combination of Q₁//(R₃-W₁) and Q₂//(R₄-W₂) circuits in series. FD is the finite length diffusion impedance.

Figure S7. Nyquist plot from EIS data associated with cycling of carbon/TiO₂ composites from 20K of PHEMA and 0.3 g of FA. The impedance changes significantly in the first 10 charge-discharge cycles.

Cyclic voltammetry was carried out by cycling a carbon/TiO₂ composite from 20K of PHEMA for 40 cycles between 0.01 and 2.0 V at a scan rate of 0.01 mV/s. Figure S8 shows the corresponding CV response, with oxidation currents shown as positive and reduction currents shown as negative.

Figure S8. Cyclic voltammetry of the carbon/TiO₂ composite from 20K of PHEMA and 0.3 g of FA at a scan rate of 0.01 mV/s with sodium metal as both counter and reference electrodes.

The distribution of pore size of carbon/TiO₂ composites is shown in Figure S9. The small size pores (<6 nm) are more formed in carbon/TiO₂ composites with increasing the molecular weight of PHEMA in the precursor from 20 kg/mol to 1000 kg/mol. This indicates that the morphology of porous carbon/TiO₂ composites pyrolyzed from PHEMA/FA/TiO₂ can be controlled by the molecular weight of PHEMA used as a thermal decomposition matrix.

Figure S9. Pore size distribution of carbon/TiO₂ composites fabricated with 20K, 300K, and 1000K PHEMA using 0.35 g PHEMA/0.3 g FA/0.3 g TiO₂ for the precursor.

Figure S10 shows the XPS spectra of the neat and 40 charge-discharge cycled carbon/TiO₂ composite anodes fabricated with 20K, 300K, and 1000K PHEMA using 0.35 g PHEMA/0.3 g FA/0.3g TiO₂ for the precursor. All the cycled samples show that the Na1s peak appears and the intensity of O1s peak increase compared to the neat anodes. It indicates that the sodium- included inorganic compounds and oxygen-rich substances form on the surface of anodes as the SEI layer.

Figure S10. XPS spectra of neat (dash line) and 40 charge-discharge cycled (solid line) carbon/TiO₂ composite anodes fabricated with (A) 20K, (B) 300K, and (C) 1000K PHEMA using 0.35 g PHEMA/0.3 g FA/0.3g TiO₂ for the precursor.

Electronic Supplementary Information

Figure S11 illustrates the morphology of the porous carbon/TiO₂ composite fabricated using 0.35 g PHEMA (20K)/FA/0.3 g TiO₂ as a function of molecular weight of FA (0.2, 0.3, 0.5 and 0.7 g). The pores of the carbon/TiO₂ composite are significantly larger for the composite produced using 0.3 g (Figure S11B) than the carbon/TiO₂ composites from 0.5 g (Figure S11C) and 0.7 g FA (Figure S11D). Figure S11A illustrates the carbon/TiO₂ composite fabricated with 0.2 g FA, which has larger apertures and exposes more TiO₂ particles than other composites because it has small carbon content.

Figure S11. TEM micrographs of porous carbon/TiO₂ composites fabricated with 0.35 g PHEMA (20K)/0.3 g TiO₂/FA of (A) 0.2, (B) 0.3, (C) 0.5, and (D) 0.7 g for the precursor.

The TGA under air atmosphere is hired to confirm the carbon content of the porous carbon/TiO₂ composite fabricated using 0.35 g PHEMA (20K)/FA/0.3 g TiO₂ as a function of amount of FA (0.2, 0.3, 0.5 and 0.7 g). The TGA curves are shown in Figure S12, and the values are 12, 15, 16, and 18 wt% for the composites using 0.2, 0.3, 0.5, and 0.7 g FA, respectively.

Figure S12. TGA curves of carbon/TiO₂ composites with different amount of FA to determine the carbon content by oxidation in air.

The distribution of pore size of carbon/TiO₂ composites is shown in Figure S13. The small size pores (<6 nm) are more formed in carbon/TiO₂ composites with increasing the amount of FA in the precursor from 0.3 g to 0.7 g. The carbon/TiO₂ composite fabricated with 0.2 g FA has the largest apertures, but also exposes a significant fraction of the TiO₂ nanoparticles. This indicates that the morphology of porous carbon/TiO₂ composites pyrolyzed from PHEMA/FA/TiO₂ can be controlled by the amount of FA used in the synthesis.

Figure S13. Pore size distribution of carbon/TiO₂ composites fabricated with 0.35 g PHEMA (20K)/0.3 g TiO₂/different amount of FA for the precursor.

Figure S14 shows the XPS spectra of the neat and 30 charge-discharge cycled carbon/TiO₂ composite anodes fabricated with different carbon contents. It indicates that the sodium- included inorganic compounds and oxygen-rich substances form on the surface of anodes as the SEI layer.

RSC Advances

Figure S14. XPS spectra of the neat (dash line) and 30 charge-discharge cycled (solid line) composite anodes fabricated with different carbon contents of carbon/TiO₂ composite: (A) 12 wt%, (B) 15 wt%, (C) 16 wt%, and (D) 18 wt%.