Journal Name

ARTICLE

Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

www.rsc.org/

Non-covalent Functionalization of Graphene Oxide by Pyrene-**Block Copolymers for Enhancing Physical Properties of Poly** (methyl methacrylate)

Shiqiang Song,^a Chaoying Wan,^{*b} Yong Zhang^{*a}

^{a.} School of Chemistry and Chemical Engineering, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.

E-mail: your zhang@sjtu.edu.cn (Y.Zhang)
International Institute for Nanocomposites Manufacturing, WMG, University of Warwick, CV4 7AL, UK.

E-mail: Chaoying.Wan@warwick.ac.uk (C.Wan.).

[†]Electronic Supplementary Information (ESI) available: GPC of Py-PMMA-Br and Py-PMMA-*b*-PDMS, FTIR spectrum of GO, GO@Py-PMMA-*b*-PDMS and Py-PMMA-*b*-PDMS, DSC spectra, SEM images and summary of composites mechanical properties. See DOI: 10.1039/x0xx00000x

Journal Name

ARTICLE

Figure S1.GPC traces of Py-PMMA-Br and Py-PMMA-b-PDMS in DMF with flow

rate of 1ml/min.

Table S1 Experimental characteristics of the Py-PMMA-Br and Py-PMMA-*b*-PDMS when polymerization via ARGET ATRP from initiator Py-Br.

Sample	DP _{tar} get	Conv.ª/ %	M _{n,theo} b/ g mol ⁻¹	M _{n,GPC} ^{c/} g mol ⁻¹	PDIc	DP _{MM} ^d	DP _{VTDM} ^d
Py-PMMA-Br	400	54	21901	27037	1.45	216	-
Py-PMMA- <i>b</i> -PDMS	40	8.7	41841	45882	1.74	216	3.5

^a Conversion was obtained gravimetrically.

^b $M_{n,theo} = M_{initiator} + ([monomer]_0/[initiator]_0) \times conversion \times M_{monomer}$.

 $^{c}M_{n}$ based on GPC using DMF as eluent and PMMA as standards.

^d (degree of polymerization) calculated by conversion.

Figure S2. FT-IR spectra of (a) GO, (b) GO@ Py-PMMA-b-PDMS and (c) Py-PMMA-b-PDMS.

Figure S3. DSC spectra of pure PMMA and composites containing different loading amounts of GO in GO@Py-PMMA-*b*-PDMS/PMMA, 0.5 wt% Py-PMMA-*b*-PDMS and 0.05 wt% GO.

ARTICLE

Table S2 Summary of Young's modulus, tensile strength, elongation at break and toughness of PMMA and composites from stress-strain curves at 30°C.

GO@Py-PMMA-b-PDMS Content (wt%)	Young's modulus (MPa)	Tensile strength (MPa)	Elongation at break (%)	Toughness (J/g)
0	846.3±27.3	16.4±0.8	39.6±1.9	5.1±0.1
0.05wt%	1037.1±51.1	25.1±1.2	86.1±4.3	16.2±0.4
0.2wt%	1214.5±60.5	26.8±1.3	60.5±3.0	12.4±0.3
0.5wt%	1067.6±53.2	25.7±1.3	68.9±3.4	13.7±0.3
1.0wt%	1020.6±51.0	21.1±1.1	66.6±3.3	10.7±0.2
Py-PMMA-b-PDMS (0.5 wt%)	809.6±73.1	17.2±1.1	88.9±4.4	10.8 ± 0.3
GO (0.05 wt%)	906.6±73.1	20.5±1.3	13.2±3.2	3.9±0.2

Figure S4. The high-magnification SEM images of the selected regions: (a) 0.5 wt% GO and (b) 1.0 wt% GO in GO@Py-PMMA-*b*-PDMS/PMMA.