Supporting Information

Effect of annealing temperature and element composition of the

titanium dioxide/graphene/hemin catalysts for oxygen reduction

reaction

Yuewu Zhao, Linqun Zhang, Wei Wei, Ying Li, Anran Liu, Yuanjian Zhang*, Songqin Liu*

Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China. Fax: +86-25-52090618; Tel: +86-25-52090613; E-mail address: liusq@seu.edu.cn; yuanjian.zhang@seu.edu.cn

Fig. S1 Typical TEM image (a) and SAED pattern (b) of the graphene.

Fig. S2 (a) Particle size distribution of the as-prepared TiO_2 was investigated in the TiO_2/GR hybrids. (b) TiO_2 -graphene oxide before solvothermal reaction. (c) TiO_2 -reduced graphene obtained after solvothermal reaction.

Fig. S3 SEM and photograph images of the as-prepared $TiO_2/Gr/Hem$ samples with different ratio of hemin and TiO_2/Gr : (a) 3/1, and (b) 1/3.

Fig. S4 (a) SEM image of the as-prepared TiO₂/Gr/Hem samples. (b) HRTEM image of the as-prepared TiO₂/Gr/Hem samples.

Fig. S5 XRD patterns of the as-prepared (a) TiO_2/Gr , (b) $TiO_2/Gr/Hem$, and (c) $TiO_2/Gr/Hem$ -700 °C. The standard pattern derived from the anatase TiO_2 (JCPDS card No. 21-1272). It can be seen that the anatase TiO_2 in the $TiO_2/Gr/Hem$ was obtained after the annealing temperature at 700 °C.

Fig. S6 SEM images of the as-obtained TiO₂/Gr/Hem-700 °C.

Fig. S7 LSV curves of the (a) TiO₂/Gr/Hem-700 °C materials (b) TiO₂, graphene, and hemin were directly mixed and annealed at 700 °C. Scan rate, 10 mV s⁻¹; rotation rate, 1600 rpm.

Fig. S8 (a) The amorphous TiO₂ can be dissolved in hydrochloric acid. (b) The obtained anatase TiO₂ after the annealing temperature at 700 °C, it cannot be dissolved in hydrochloric acid. (c) The TiO₂/Gr-700 °C also cannot be dissolved in hydrochloric acid. (d) XRD pattern of the obtained anatase TiO₂ after the annealing temperature at 700 °C.

Fig. S9 (a) Structural diagrams of the hemin and PPIX. (b) LSV curves of Hem-700 $^{\circ}$ C (black line) and PPIX-700 $^{\circ}$ C (red line) in O₂-saturated 0.1 M KOH. Scan rate, 10 mV s⁻¹; rotation rate, 1600 rpm.