Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supplementary Information

Theoretical Investigations of the 2D Chiral Segregation Induced by External Directional Fields

Aleksandra Woszczyk and Paweł Szabelski

Department of Theoretical Chemistry, Maria-Curie Skłodowska University,

Pl. M.C. Skłodowskiej 3, 20-031 Lublin, Poland.

1. Simulation details

The simulation algorithm was organized as follows. In the first step N molecules of a selected type (S, R) were distributed randomly on the lattice. Next, the adsorbed layer was equilibrated by a series of attempts to move each molecule to a new position (n). To that end the selected molecule was randomly translated and the four allowed orientations from Fig. 1 were probed. For each of these trial configurations, l the corresponding potential energy was calculated using the simple summation

$$E_{nl} = \omega \sum_{i=1}^{4} \sum_{j=1}^{4} s_{ij} - mB \cos(\theta_l)$$
 for $l = 1..4$ (1)

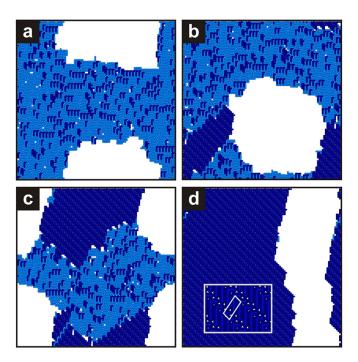
where the first sum runs over all segments of the selected molecule and the second sum runs over nearest neighbors of the segment i on a square lattice. The occupation variable s_{ij} is equal to 1 if the sites i and j are occupied by segments belonging to a pair of neighboring molecules. Otherwise it is equal to zero. In the next step of the simulation the associated Rosenbluth factor:

$$w_n = \sum_{l=1}^{4} \exp[-\beta E_{nl}]$$
 (2)

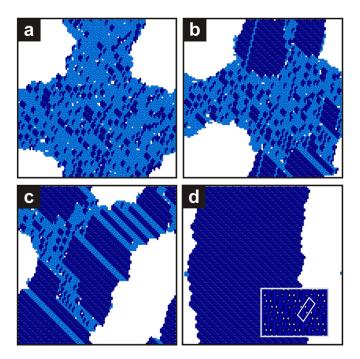
was determined for the new position and one of the trial configurations, say x, was chosen with probability equal to

$$p_{nx} = \exp[-\beta E_{nx}]/w_n \tag{3}$$

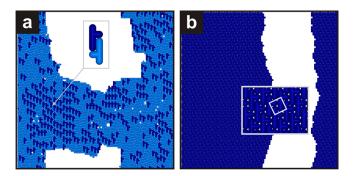
where $\beta=1/kT$ and k and T have their usual meanings. The same procedure (see Eqs. 2 and 3) was used to calculate the Rosenbluth factor for the old position, w_o including the original configuration of the selected molecule. To accept or reject the new configuration x the transition probability was calculated:


$$P = \min[1, w_n / w_o] \tag{4}$$

and it was compared with a randomly generated number $r \in (0,1)$. If r < P the move was accepted; otherwise the molecule was left in the original configuration. All of the results described here were obtained for $\omega = -1$ and m = 1, assuming that m, B, ω , k and T are dimensionless parameters. To equilibrate the systems at a given value of B we used 2×10^7 MC steps per molecule, where one MC steps is a single attempt to move (and rotate) a molecule to a new position on the lattice. The same set of parameters was used to simulate the


overlayers comprising five-membered prochiral molecules discussed in the following section.

The results of this study are averages over ten independent systems replicas.


2. Snapshots of the enantiopure overlayers comprising five-membered molecules

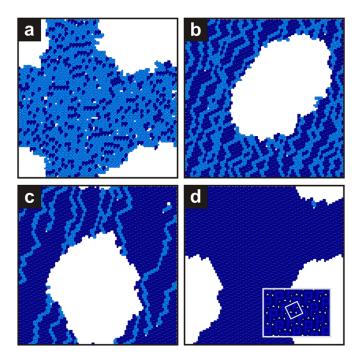

Figure S1. Snapshots of the enantiopure overlayer comprising 1400 molecules **1**(S) simulated for different strengths of the external field, B: a) 0.00, b) 0.36 c) 0.37 and d) 0.40; T=0.5. The inset in panel d) presents a magnified fragment of the overlayer in which the parallelogram ($\sqrt{2} \times \sqrt{13}$) unit cell is marked in white. The molecules with upward orientation are colored in dark blue.

Figure S2. Snapshots of the enantiopure overlayer comprising 1400 molecules **2**(S) simulated for different strengths of the external field, B: a) 0.00, b) 0.21 c) 0.25 and d) 0.30; T=0.5. The inset in panel d) presents a magnified fragment of the overlayer in which the parallelogram ($\sqrt{2} \times \sqrt{13}$) unit cell is marked in white. The molecules with upward orientation are colored in dark blue.

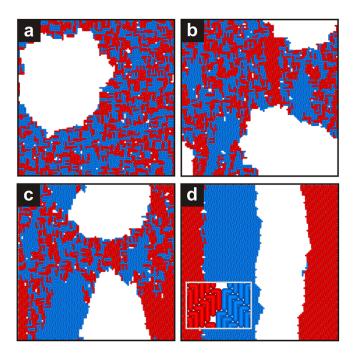


Figure S3. Snapshots of the enantiopure overlayer comprising 1400 molecules **3**(S) simulated for different strengths of the external field, B: a) 0.41 and b) 1.50; T=0.5. The inset in panel a) shows the bimolecular configuration responsible for the stabilization of molecules with downward orientation (light blue). The inset in panel b) is a magnified fragment of the overlayer in which the square $(\sqrt{5} \times \sqrt{5})$ unit cell is marked in white. The molecules with upward orientation are colored in dark blue.

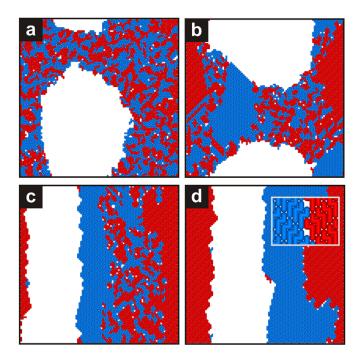
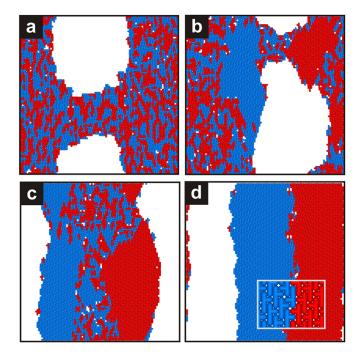


Figure S4. Snapshots of the enantiopure overlayer comprising 1400 molecules **4**(S) simulated for different strengths of the external field, B: a) 0.10, b) 0.32 c) 0.43 and d) 0.58; T=0.5. The inset in panel d) presents a magnified fragment of the overlayer in which the square $(\sqrt{5} \times \sqrt{5})$ unit cell is marked in white. The molecules with upward orientation are colored in dark blue.


. 2. Snapshots of the racemic overlayers comprising five-membered molecules

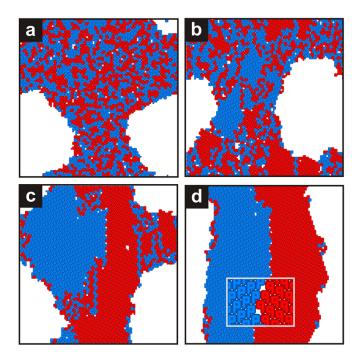

Figure S5. Snapshots of the racemic overlayer comprising 700 S + 700 R molecules **1** simulated for different strengths of the external field, B: a) 0.10, b) 0.36 c) 0.37 and d) 0.40; T = 0.5. The inset in panel d) presents a magnified fragment of the overlayer.

Figure S6. Snapshots of the racemic overlayer comprising 700 S + 700 R molecules 2 simulated for different strengths of the external field, B: a) 0.10, b) 0.60 c) 0.66 and d) 0.80; T = 0.5. The inset in panel d) presents a magnified fragment of the overlayer.

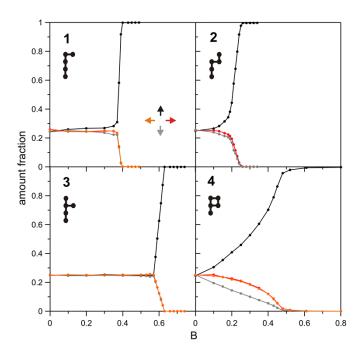


Figure S7. Snapshots of the racemic overlayer comprising 700 S + 700 R molecules **3** simulated for different strengths of the external field, B: a) 0.20, b) 0.51 c) 0.55 and d) 0.74. The inset in panel d) presents a magnified fragment of the overlayer.

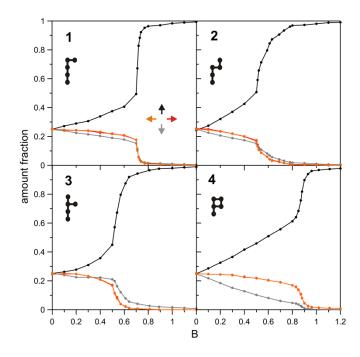


Figure S8. Snapshots of the racemic overlayer comprising 700 S + 700 R molecules 4 simulated for different strengths of the external field, B: a) 0.2, b) 0.87 c) 0.90 and d) 1.00; T = 0.5. The inset in panel d) presents a magnified fragment of the overlayer.

3. Statistics of molecules with different orientations

Figure S9. Effect of the external field on the amount fraction of molecules **1-4** with the orientations indicted by the colored arrows from panel 1; enantiopure overlayers, 1400 S; T = 0.5.

Figure S10. Effect of the external field on the amount fraction of molecules **1-4** with the orientations indicted by the colored arrows from panel 1; racemic mixtures, 700R + 700S; T = 0.5.