Electronic Supplementary Information

High birefringence bistolane liquid crystals: the synthesis and properties

Dorota Węgłowska*, Przemysław Kula and Jakub Herman
Faculty of Advanced Technologies and Chemistry, Military University of Technology,
2 Kaliskiego Str., 00-908 Warsaw 49, Poland
*Email: dorota.weglowska@wat.edu.pl

1 Preparative procedures

The purity of intermediates and the main compounds were determined by thin layer chromatography (TLC) and GC-MS(EI) (Agilent 6890N, Santa Clara, CA, USA) chromatography system. The structures of the final compounds were confirmed by ${ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{C}$ NMR spectroscopy (Bruker, Avance III HD, $500 \mathrm{~Hz} ; \mathrm{CDCl}_{3}$, Billerica, MA, USA).

Experimental

4-iodo-2-methyl aniline

The suspension of 2 -methylaniline ($250 \mathrm{~g} ; 2.33 \mathrm{~mol}$), $\mathrm{NaHCO}_{3} \quad(391.4 \mathrm{~g} ; 4.66 \mathrm{~mol})$ in dichloromethane (1 L) and water (1.4 L) was mixed in room temperature. Then iodine was added partial wise. The reaction mixture was stirred at room temperature 1 h . Then the reaction mixture was poured into $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ and then by water twice. Phases were separated. The crude product was crystallized from ethyl alcohol (0.5 L)/water(1.5L). Yield: 485g (89.2\%); GC: 99.9\%; MS: 233, 216, 204, 191, 176, 165.

1,4-diiodo-2-methylbenzene

To the suspension of 4-iodo-2-methyl aniline ($485 \mathrm{~g} ; 2.08 \mathrm{~mol}$) in water $(0.62 \mathrm{~L})$ hydrochloric acid $(0.52 \mathrm{~mL})$ was added dropwise. The reaction mixture was cooled on carbon dioxide-acetone bath to $-5^{\circ} \mathrm{C}$ and the solution of $\mathrm{NaNO}_{2}(154.6 \mathrm{~g} ; 2.24 \mathrm{~mol})$ in water (0.7 L) was added dropwise. Then the reaction mixture was stirred 1 h at $5^{\circ} \mathrm{C}$. Next, the solution of $\mathrm{NaI}(369.7 \mathrm{~g} ; 2.47 \mathrm{~mol})$ in water (0.4 L) was added dropwise. Then to the reaction mixture $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1L) was added and the reaction mixture was poured into $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{5}$ and by water twice. Phases were
separated. The organic phase was dried over MgSO_{4} and the solvent was evaporated. The crude product was distilled under vacuum.

Yield: 395g (55.2\%); bp: 108-109 (0.8mmHg); GC: 99.5\%; MS: 344, 317, 291, 254, 217, 192, 172.

2-methyl-1,4-bis[(4-propylphenyl)ethynyl]benzene 3Me3

To the suspension of 1,4 -diiodo-2-methylbenzene $(17.2 \mathrm{~g} ; 0.05 \mathrm{~mol})$, triethylamine $(13.84 \mathrm{~mL}$; 0.1 mol), 1,8-diazabicyclo(5.4.0)undek-7-en (14.92 mL ; 0.1 mol), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ cat. and CuI cat. in tetrahydrofurane (0.3L) the solution of 1-ethynyl-4-butylbenzen (18.63g; 0.1mol) in tetrahydrofurane $(50 \mathrm{~mL})$ was added dropwise. The reaction mixture was stirred at room temperature 6 h and then the solvent was evaporated. Then to the reaction mixture water $(0.3 \mathrm{~L})$ and toluene (0.3 L) were added and obtained emulsion was filtered off. Phases were separated. The inorganic phase was extracted with toluene $(3 \times 0.1 \mathrm{~L})$ and then the collected organic phases were poured into water $(3 \times 0.1 \mathrm{~L})$ and dried over MgSO_{4}. The solvent was evaporated. The crude product was crystallized from ethanol (1L)/acetone (0.5 L). A yellow solid was purified on a column chromatography $\left(\mathrm{SiO}_{2} /\right.$ hexane $)$ and then recrystallized from ethanol (0.3 L)/acetone (0.3 L).
Yield: 15.3 g (81.3\%); GC: >99.9\%; MS: 376, 360, 347, 331, 318, 302, 289, 276, 263, 250, 239, 226, 213, 202, 188, 173, 159.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.48-7.50(d, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.44(s, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.37(s, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.36$ $(s, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.27(s, 2 \mathrm{H}, \mathrm{A}-\mathrm{H}), 7.19-7.21(m, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.63-2.66\left(t, 4 \mathrm{H}, \mathrm{Ar}^{2}-\mathrm{CH}_{2}-\right), 2.55(s, 3 \mathrm{H}$, Ar- CH_{3}), 1.66-1.73 ($\left.m, 4 \mathrm{H},-\mathrm{CH}_{2}-\right), 0.97-1.00\left(t, 6 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 143.3, 140.1, $132.4,131.7,131.5,128.8,128.6,123.2,123.1,120.6,120.4,95.3,91.0,88.8,87.6,38.0,24.4$, 24.3, 20.6, 13.8 .

2-methyl-1,4-bis[(4-butylphenyl)ethynyl]benzene 4Me4

Yield: 15.2 g (75.0\%); GC: 99.6\%; MS: 404, 389, 361, 345, 318, 302, 276, 250, 226, 202, 181, 159.

2-methyl-1,4-bis[(4-pentylphenyl)ethynyl]benzene 5Me5

Yield: 13.1 g (60.7\%); GC: $>99.9 \%$; MS: 432, 417, 402, 389, 375, 362, 345, 331, 318, 302, 289, 276, 263, 239, 216, 202, 189, 176, 159.

2-methyl-1,4-bis[(4-hexylphenyl)ethynyl]benzene 6Me6

Yield: 16.8 g (72.9%); GC: $>99.9 \%$; MS: $460,438,416,389,364,345,318,289,263,245,226$, 202, 178, 159.

Yield: 16.9g (69.2\%); GC: >99.9\%; MS: 488, 458, 430, 403, 373, 345, 318, 289, 263, 226, 202, $159,115,91,67,43,20$.

4-[(4-heptylphenyl)ethynyl]-2-methyl-1-[(4-butylphenyl)ethynyl]benzene 7Me4

Yield: 3.8 g (45\%); GC: 98.7%; MS: 446, 418, 403, 376, 361, 345, 318, 302, 276, 252, 226, 202, 181, 159.

4-[(4-heptylphenyl)ethynyl]-2-methyl-1-[(4-pentylphenyl)ethynyl]benzene 7Me5

Yield: 3.5 (42\%); GC: 97.7\%; MS: 460, 444, 417, 403, 389, 375, 361, 346, 332, 318, 302, 276, 252, $226,202,187,173,159$.

1,4-bis[(4-pentyloxyphenyl)ethynyl]-2-methylbenzene 5OMeO5

Yield: 4.2 g (55\%); GC: 99.4%; MS: 464, 435, 418, 393, 377, 350, 324, 294, 276, 252, 231, 202, 178, 162.

1-[(4-pentylphenyl)ethynyl]-2-methyl-4-\{[4-(ethylsulfanyl)phenyl]ethynyl\}benzene 2SMe5

 Yield: 3.4 g (65\%); GC: 99.9\%; MS: 422, 393, 365, 336, 182.

Yield: 7.1 (47\%); GC: 99.4%; MS: 496, 466, 443, 425, 393, 374, 355, 321, 289, 269, 248, 213, 178, 160.

2-ethyl-1,4-bis[(4-ethylphenyl)ethynyl]benzene 2Et2
Yield: 15g (55\%); GC: 99.5\%; MS: 362, 317, 289, 166.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.48-7.50(d, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.44(s, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.37(s, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.35(s, 1 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}), 7.27(s, 2 \mathrm{H}, \mathrm{A}-\mathrm{H}), 7.21-7.24(m, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.89-2.94\left(q, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}_{2}-\right), 2.68-2.73(q, 4 \mathrm{H}$, $\left.\mathrm{Ar}-\mathrm{CH}_{2}-\right), 1.34-1.37\left(t, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 1.27-1.30\left(t, 6 \mathrm{H},-\mathrm{CH}_{3}\right) .{ }^{1} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 146.1$, 144.8, $136.6,132.0,131.5,131.0,128.8,128.0,123.2,122.5,120.6,120.4,94.7,90.9,88.9,87.3,28.9$, 27.7, 15.3, 14.6.

2-ethyl-1,4-bis[(4-propylphenyl)ethynyl]benzene 3Et3

Yield: 18g (65\%); GC: 99.7\%; MS: 392, 317, 166.

4-[(4-propylphenyl)ethynyl]-2-ethyl-1-[(4-pentylphenyl)ethynyl]benzene 3Et5

Yield: 5 g (59\%); GC: 99.5%; MS: 418, 389, 361, 317, 166.

2-ethyl-1,4-bis[(4-butylphenyl)ethynyl]benzene 4Et4
Yield: $11 \mathrm{~g}(67 \%)$; GC: $99.8 \% ; \mathrm{MS}: 418,375,317,166$.

4-[(4-butylphenyl)ethynyl]-2-ethyl-1-[(4-ethylphenyl)ethynyl]benzene 4Et2 Yield: 12 g (62\%); GC: 99.3%; MS: 390, 347, 317, 166.

4-[(4-butylphenyl)ethynyl]-2-ethyl-1-[(4-propylphenyl)ethynyl]benzene 4Et3 Yield: 6.8g (54\%); GC: 99.6\%; MS: 404, 375, 331, 166.

2-ethyl-1,4-bis[(4-pentylphenyl)ethynyl]benzene 5Et5
Yield: 12g (55\%); GC: 99.0\%; MS: 446, 431, 389, 166.

4-[(4-pentylphenyl)ethynyl]-2-ethyl-1-[(4-propylphenyl)ethynyl]benzene 5Et3 Yield: 12g (62\%); GC: 99.5\%; MS: 418, 389, 361, 317, 166.

2-ethyl-1,4-bis \{[4-(pentylsulfanyl)phenyl]ethynyl\}benzene 5SEtS5
Yield: 5.6 g (49\%); GC: 99.5%; MS: 510, 439, 302, 255, 185.

Table 1. The melting temperatures $\left[{ }^{\circ} \mathrm{C}\right]$ (upper row; onset point) and the enthalpies $[\mathrm{kJ} / \mathrm{mol}]$ (lower row) of the members of the homologous series nXRXm from DSC measurements determined during heating cycles.

Acronym	R	n	m	Cr	$\begin{aligned} & \mathbf{T}_{\mathrm{mp}} \\ & { }^{\circ} \mathrm{C} \mid \\ & \hline \end{aligned}$	N	$\begin{gathered} \mathbf{T}_{\mathrm{c}} \\ { }^{\circ} \mathrm{C}\lceil \\ \hline \end{gathered}$	Iso
3Me3	CH_{3}	3	3	-	$\begin{aligned} & 125.3 \\ & 19.16 \end{aligned}$	-	$\begin{gathered} 208.3 \\ 1.08 \end{gathered}$	-
4Me4	CH_{3}	4	4	-	$\begin{gathered} 87.7 \\ 27.38 \end{gathered}$	-	$\begin{gathered} 178.9 \\ 0.88 \end{gathered}$	-
5Me5	CH_{3}	5	5	-	$\begin{gathered} 80.5 \\ 20.60 \end{gathered}$	-	$\begin{gathered} 176.1 \\ 1.44 \end{gathered}$	-
6Me6	CH_{3}	6	6	-	$\begin{gathered} 73.4 \\ 27.29 \end{gathered}$	-	$\begin{gathered} 151.5 \\ 1.02 \end{gathered}$	-
7Me7	CH_{3}	7	7	-	$\begin{gathered} 72.7 \\ 26.94 \end{gathered}$	-	$\begin{gathered} 147.4 \\ 1.27 \end{gathered}$	-
7Me4	CH_{3}	7	4	-	$\begin{aligned} & 45.5 \\ & 11.99 \end{aligned}$	-	$\begin{gathered} 158.9 \\ 1.22 \end{gathered}$	-
7Me5	CH_{3}	7	5	-	$\begin{aligned} & 53.3 \\ & 15.90 \end{aligned}$	-	$\begin{gathered} 160.7 \\ 1.56 \end{gathered}$	-
50MeO5	CH_{3}	5	5	-	$\begin{aligned} & 120.8 \\ & 36.97 \end{aligned}$	-	$\begin{gathered} 217.9 \\ 0.22 \end{gathered}$	-
2SMe5	CH_{3}	2	5	-	$\begin{aligned} & 110.9 \\ & 27.04 \end{aligned}$	-	$\begin{gathered} 186.3 \\ 1.20 \end{gathered}$	\bullet
5SMeS5	CH_{3}	5	5	-	$\begin{aligned} & 120.0 \\ & 50.32 \end{aligned}$	-	$\begin{gathered} 126.4 \\ 0.67 \end{gathered}$	-
5SMe5	CH_{3}	5	5	-	$\begin{aligned} & 94.1 \\ & 34.57 \end{aligned}$	-	$\begin{gathered} 150.2 \\ 0.96 \end{gathered}$	-
2Et2	$\mathrm{C}_{2} \mathrm{H}_{5}$	2	2	-	$\begin{gathered} 84.6 \\ 20.70 \end{gathered}$	-	$\begin{gathered} 131.7 \\ 0.96 \end{gathered}$	-
3Et3	$\mathrm{C}_{2} \mathrm{H}_{5}$	3	3	-	$\begin{gathered} 48.2 \\ 14.48 \end{gathered}$	-	$\begin{gathered} 151.9 \\ 1.65 \end{gathered}$	-
3Et5	$\mathrm{C}_{2} \mathrm{H}_{5}$	3	5	-	$\begin{gathered} 59.4 \\ 16.37 \end{gathered}$	-	$\begin{gathered} 137.4 \\ 1.59 \end{gathered}$	-
4Et4	$\mathrm{C}_{2} \mathrm{H}_{5}$	4	4	-	$\begin{aligned} & 29.5 \\ & 16.70 \end{aligned}$	-	$\begin{gathered} 121.0 \\ 1.37 \end{gathered}$	-
4Et2	$\mathrm{C}_{2} \mathrm{H}_{5}$	4	2	-	$\begin{gathered} 58.7 \\ 26.03 \end{gathered}$	-	$\begin{gathered} 123.5 \\ 1.08 \end{gathered}$	-
4Et3	$\mathrm{C}_{2} \mathrm{H}_{5}$	4	3	-	$\begin{gathered} 36.4 \\ 22.27 \end{gathered}$	-	$\begin{gathered} 131.8 \\ 1.45 \end{gathered}$	\bullet
5Et5	$\mathrm{C}_{2} \mathrm{H}_{5}$	5	5	-	$\begin{gathered} 3.9 \\ 5.88 \end{gathered}$	\bullet	$\begin{gathered} 120.7 \\ 1.58 \end{gathered}$	-
5Et3	$\mathrm{C}_{2} \mathrm{H}_{5}$	5	3	-	$\begin{aligned} & 26.8 \\ & 9.11 \end{aligned}$	\bullet	$\begin{gathered} 136.1 \\ 1.87 \end{gathered}$	\bullet
5SEtS5	$\mathrm{C}_{2} \mathrm{H}_{5}$	5	5	-	$\begin{aligned} & 86.5 \\ & 48.58 \end{aligned}$	-	-	-

