Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

1 Supplementary Information

2 S1 Modified Stern–Volmer equation

3 $\frac{F_0}{F_0 - F} = \frac{1}{f_a K_{sv}} \frac{1}{[Q]} + \frac{1}{f_a}$ (S1)

4 F_0 and F are the relative fluorescence intensities of CAT in the absence and 5 presence of the Hg(II), respectively; f_a is the fraction of fluorophore accessible to the 6 quencher; [Q] is the concentration of Hg(II), and K_{sv} is the modified Stern–Volmer 7 quenching constant.

8 S2 Double logarithm equation

9
$$\log \frac{F_0 - F}{F} = \log K + n \log[Q]$$
(S2)

10 K_b is the binding constant for the Hg(II)-CAT interaction and *n* is the number of 11 binding sites per CAT molecule, which can be determined by the slope and the 12 intercept of the double logarithm regression curve of $\log((F_0-F)/F)$ versus log [*Q*].

13 S3 Van't Hoff equation and thermodynamic equation

14
$$\ln K = -\Delta H / R T + \Delta S / R$$
(S3)

15
$$\Delta G = \Delta H - T \Delta S \tag{S4}$$

16 *K* is the binding constant at temperature T and R is the universal gas constant.

17 S4 The species of Hg(II) in the experimental system

18 The coordination reactions of Hg(II) with Cl⁻ in the experimental system mainly
19 follow equations S5-S8:

20
$$Hg^{2+} + Cl^{-} f [HgCl]^{+} \beta_{1} = 10^{6.74}$$
 (S5)

21
$$Hg^{2+} + 2Cl^{-} f HgCl_{2}^{0} \beta_{2} = 10^{13.22}$$
 (S6)

1
$$Hg^{2+} + 3Cl^{-}f [HgCl_{3}]^{-}\beta_{3} = 10^{14.07}$$
 (S7)

2
$$Hg^{2+} + 4Cl^{-} f [HgCl_{4}]^{2-} \beta_{4} = 10^{15.07}$$
 (S8)

Meanwhile, the experimental system can undergo coordination equilibriums of
Hg(II) with OH⁻ in these ways (equations S9-S11):

5
$$Hg^{2+} + OH^{-} f [HgOH]^{+} \beta_{1}^{'} = 10^{10.6}$$
 (S9)

6
$$Hg^{2+} + 2OH^{-}f Hg(OH)_{2}^{0}\beta_{2} = 10^{21.8}$$
 (S10)

7
$$Hg^{2+} + 3OH^{-}f$$
 [Hg(OH)₃]⁻ $\beta_{3}^{'} = 10^{20.9}$ (S11)

8 where β stands for the stability constants of the complexes. Then, the equilibrium
9 equation was obtained from equation S12:

10

$$C_{Hg(II)} = [Hg^{2+}] \{1 + \beta_1 [Cl^-] + \beta_2 [Cl^-]^2 + \beta_3 [Cl^-]^3 + \beta_4 [Cl^-]^4 + \beta_1 [OH^-] + \beta_2 [OH^-]^2 + \beta_3 [OH^-]^3\}$$
(S12)

The distribution fractions (ψ_x) of different species of Hg(II) can be calculated
from equation S13:

$$\psi_X = C_X / C_{Hg(II)} \tag{S13}$$

14 where x=Hg²⁺, [HgCl]⁺, HgCl₂, [HgCl₃]⁻, [HgCl₄]²⁻, [HgOH]⁺, Hg(OH)₂,
15 [Hg(OH)₃]⁻, successively.

As the pH value of the buffer solution is 7.40, [OH⁻] in our experimental system 17 is 10^{-6.6} mol L⁻¹. [Cl⁻] is equal to 0.10 mol L⁻¹, which is mainly from the buffer 18 solution, and the contribution from dissolved HgCl₂ is negligible. The distribution 19 fractions of different species of Hg(II) were calculated using the equations above, and 20 the results are shown in Table S1.

Table S1 The distribution	fractions	of different	species	of Hg(II)
---------------------------	-----------	--------------	---------	-----------

Species	Hg ²⁺	[HgCl] ⁺	HgCl ₂	[HgCl ₃] ⁻
Fraction (%)	2.49×10 ⁻¹⁰	1.37×10-4	41.35	29.27
Species	[HgCl ₄] ²⁻	[HgOH] ⁺	Hg(OH) ₂	[Hg(OH) ₃] ⁻
Fraction (%)	29.27	2.49×10 ⁻⁶	0.0991	3.14×10 ⁻⁹

6