Formation and growth mechanisms of natural metastable twin boundary in

crystalline β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: A computational

study

Zhichao Liu, Qiong Wu, Weihua Zhu,* Heming Xiao Institute for Computation in Molecular and Materials Science and Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094, China

Keywords HMX, twin boundary, SCC-DFTB, dispersion correction, metastability

^{*} Corresponding author. E-mail: <u>zhuwh@njust.edu.cn</u>

		а	b	С	β	V	ρ
β-ΗΜΧ	Expt. ^a	6.54	11.05	8.70	124.30	519.39	1.89
	pbc	6.43(-1.68) ^g	11.08(0.27)	8.68(-0.23)	123.6(-0.56)	515.26(-0.80)	1.91(1.05)
	CHNO	6.45(-1.38)	11.01(-0.36)	8.71(0.11)	123.9(-0.32)	513.19(-1.19)	1.92(1.59)
RDX	Expt. ^b	11.4	10.6	13.1	90.0	1588.5	1.86
	pbc	11.39	10.52	13.44	90.0	1610.56	1.83
	CHNO	11.41	10.54	13.38	90.0	1609.49	1.83
ε-CL-20	Expt. ^c	8.85	12.56	13.39	106.82	1424.15	2.04
	pbc	8.76	12.27	13.61	109.17	1382.32	2.11
	CHNO	8.77	12.28	13.80	110.34	1392.43	2.09
TATB	Expt. ^d	9.01	9.03	6.81	91.82	442.52	1.94
	pbc	9.04	9.04	6.65	94.25	442.02	1.94
	CHNO	9.02	9.02	6.75	94.56	441.39	1.94
PETN	Expt. ^e	9.28	9.28	6.61	90.0	568.97	1.85
	pbc	9.20	9.20	6.53	90.0	552.75	1.90
	CHNO	9.19	9.19	6.56	90.0	554.06	1.89

Table S1. Comparison of theoretical and experimental lattice parameters of several

 typical high explosives by using SCC-DFTB-D methods.

*a-e*The experimental data are taken from references 27-31, respectively.

^{*f*} The values in parentheses correspond to the percentage differences relative to the experimental data.