Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2015

Electronic Supporting Information

A new pyridoxal based fluorescence chemo-sensor for detection of Zn(II) and its application in bio imaging

Senjuti Mandal,^a Yeasin Sikdar,^a Dilip K. Maiti,^a Guru Prasad Maiti,^b Sushil Kumar Mandal,^c Jayanta Kumar Biswas,^c Sanchita Goswami^{a*}

^a Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata – 700009, India. E-mail: sgchem@caluniv.ac.in

^b Department of Molecular Biology and Biotechnology, University of Kalyani, Kalyani-741235, West Bengal, India.

^c Department of Ecological Engineering & Environmental Management, University of Kalyani, Kalyani, Nadia-741235, West Bengal, India.

Contents	Page No.
1. Examples of tautoimerism in the literature	3-7
2. Figure S1: ¹ H NMR spectra and FTIR spectra of PydDmen	8
3. Figure S2: FTIR and ESI-MS of PydDmen-Zn ²⁺	9
4. Figure S3: Job's plot for the determination of complex stoichiometry	10
5. Figure S4: Competitive study of emission intensity of PydDmen	11
6. Figure S5: Effect of the pH on the fluorescence intensity of PydDmen in presence of Zn^{2+} ions	11
7. Figure S6: Fluorescence emission spectra of PydDmen in presence of Zn^{2+} ion followed by addition of Na ₂ EDTA and Zn^{2+} ion	12
8. Figure S7: Determination of the detection limit of Zn ²⁺ by PydDmen	13
9. Figure S8: Anion independent emission plot of PydDmen	14

10. Figure S9: Contour plots of some selected molecular orbitals of PydDmen-Zn ²⁺	15
11. Table S1: Fluorescence lifetimes of chemosensor PydDmen and PydDmen-Zn ²⁺	16
12. Table S2: Changes in chemical shifts (δ ppm) of PydDmen during ¹ H-NMR titration experiment upon gradual addition of Zn(CH ₃ COO) ₂ .2H ₂ O	17
13. Table S3: Theoretical bond lengths and bond angles of PydDmen-Zn ²⁺	18
14. Table S4: Energy of selected MOs of PydDmen-Zn ²⁺	19
15. Table S5: Vertical electronic transitions calculated by TDDFT/CPCM method for PydDmen-Zn ²⁺ in ethanol	19

Serial No.	Ligands used	Sensed species	Type of tautomerism	Reference
1		Zn ²⁺	Keto-enol	13(a)
2		Zn ²⁺	Keto-enol	13(b)
3	X = S and O	F	Azo-hydrazone	13(c)

Chart 1 : Examples of tautomerism encountered in literature.

4	HN OH HO NH	Zn ²⁺	Keto-enol	13(d)
5	N HO	Al ³⁺ ,ClO ₄	Keto-enol	13(e)
6		F	Keto-enol	13(f)
7	$Ph \underbrace{ }_{Ph} \underbrace{ }_{O} \underbrace{ }_{NO_2}$	Mg ²⁺ ,Ca ²⁺	Benzenoid-quinoid tautomerism	13(g)

11	F N HO F N HO	Cu ²⁺	Enol-imine keto- enamine	13(k)
12		Pd ²⁺	Keto-enol	13(l)

Figure S1: (a) ¹H NMR spectra of PydDmen in DMSO-d₆, (b) FTIR spectra of PydDmen.

Figure S2: (a) FTIR spectra of PydDmen-Zn²⁺, (b)ESI-MS of PydDmen-Zn²⁺ in methanol.

Figure S3: Job's plot for the determination of $PydDmen-Zn^{2+}$ (1:1) complex stoichiometry.

Figure S4: Relative emission intensity change profile of the chemosensor **PydDmen** (5X10⁻⁶ M) in presence of 14 equiv. of various metal ions at 25°C in EtOH/ H₂O (4:1, v/v) in tris buffer at pH 7.4 (λ_{ex} =411 nm).

Figure S5: Effect of the pH on the fluorescence intensity of **PydDmen** ($5x10^{-6}$ M) in the presence of 14 equiv. of Zn^{2+} ions (λ_{ex} =411 nm).

Figure S6: Fluorescence emission spectra of **PydDmen** in presence of Zn^{2+} ion followed by addition of Na₂EDTA (λ_{ex} =411 nm) and Zn^{2+} ion.

Figure S7: Determination of the detection limit of Zn^{2+} by **PydDmen** (5 x 10⁻⁶ M) in EtOH/ H₂O (4:1, v/v) in tris buffer at pH 7.4 (λ_{ex} =411 nm).

Figure S8: Relative emission intensity profile showing anion independency of **PydDmen** at 25°C in EtOH/ H₂O (4:1, v/v) in tris buffer at pH 7.4 (λ_{ex} =411 nm).

НОМО

HOMO-1

HOMO-2

HOMO-3

HOMO-4

HOMO-5

Figure S9: Contour plots of some selected molecular orbitals of $PydDmen-Zn^{2+}$.

	$\tau_1(ns)$	$\tau_2(ns)$	$\tau_3(ns)$	a ₁	a ₂	a ₃	χ^2	τ_{av}	Φ	$k_r(s^{-1}) \times 10^9$	Fold w.r.t.	$k_{nr} (s^{-1}) \times$
											PydDmen	10^{9}
PydDmen	0.821	3.375	9.334	0.349	0.243	0.406	1.089	3.79	0.094	0.0248	-	0.239
PydDmen	1.479	9.078	-	0.112	0.888	-	1.1	8.23	0.408	0.0496	2	0.0719
-Zn ²⁺												

Table S1: Fluorescence lifetimes of chemosensor **PydDmen** and **PydDmen-Zn²⁺** in EtOH/H₂O (4:1,v/v).

Equiv.	H _a	H _b	H _d	H _e	H _g	H _h
0.0	8.797	4.548	7.762	2.271	3.672	2.471
0.5	8.666	4.442	7.224	2.157	3.614	2.513
1.0	8.689	4.434	7.237	2.165	3.582	2.534
1.5	8.700	4.442	7.263	2.179	3.595	2.546
2.0	8.703	4.446	7.272	2.182	3.601	2.547

Table S2: Changes in chemical shifts (δ ppm) of **PydDmen** during ¹H-NMR titration experiment upon gradual addition of Zn(CH₃COO)₂.2H₂O.

Bonds (Å)	Calc.		
Zn1-O2	1.87830		
Zn1-O3	2.09134		
Zn1-O4	3.66364		
Zn1-O7	1.97689		
Zn1-N2	2.84727		
Zn1-N3	2.10894		
Angles(°)			
O2-Zn1-O3	98.800		
O2-Zn1-O4	108.829		
O2-Zn1-O5	137.041		
O2-Zn1-N2	71.650		
O2-Zn1-N3	120.002		
O3-Zn1-O4	108.829		
O3-Zn1-O5	94.733		
O3-Zn1-N2	159.937		
O3-Zn1-N3	99.222		
O4-Zn1-O5	156.413		
O4-Zn1-N2	52.232		
O4-Zn1-N3	78.168		
O5-Zn1-N2	104.250		
O5-Zn1-N3	97.462		
N2-Zn1-N3	72.236		

Table S3: Theoretical bond lengths and bond angles of **PydDmen-Zn**²⁺.

 Table S4: Energy of selected MOs of PydDmen-Zn²⁺.

МО	Energy (eV)
LUMO+5	0.64
LUMO+4	0.49
LUMO+3	0.39
LUMO+2	-0.28
LUMO+1	-1.19
LUMO	-2.26
НОМО	-5.54
HOMO-1	-5.95
HOMO-2	-7.16
HOMO-3	-7.30
HOMO-4	-7.41
HOMO-5	-7.55
HOMO-6	-7.82
HOMO-7	-8.43
HOMO-8	-8.63
HOMO-9	-8.69
HOMO-10	-8.79

Table S5: Vertical electronic transitions calculated by TDDFT/CPCM method for $PydDmen-Zn^{2+}$ inethanol.

E _{excitation}	$\lambda_{excitation}$	Osc. Strength	Key transitions	Character
(eV)	(nm)	(f)		
2.6848	461.81	0.0231	(69%) HOMO-1 \rightarrow LUMO	$\pi(L) \rightarrow \pi^*(L), ILCT$
			(31%) HOMO \rightarrow LUMO	$\pi(L) \rightarrow \pi^*(L), ILCT$
3.0345	408.58	0.2724	(31%) HOMO-1 \rightarrow LUMO	$\pi(L) \rightarrow \pi^*(L), ILCT$
			(69%) HOMO \rightarrow LUMO	$\pi(L)/p\pi(o) \rightarrow \pi^*(L), ILCT$
3.6541	339.30	0.0016	(71%) HOMO \rightarrow LUMO+1	$\pi(L) \rightarrow \pi^*(L), ILCT$
3.7591	329.83	0.0059	(70%) HOMO-2 \rightarrow LUMO	$\pi(L)/p\pi(o) \rightarrow \pi^*(L), ILCT$
4.1860	296.19	0.0176	(23%) HOMO-6 \rightarrow LUMO	$\pi(L)/p\pi(o) \rightarrow \pi^*(L), ILCT$
			(26%) HOMO-4 \rightarrow LUMO	$\pi(L) \rightarrow \pi^*(L)$, ILCT
			(51%) HOMO-3 \rightarrow LUMO	$\pi(L) \rightarrow \pi^*(L), ILCT$
4.2580	291.18	0.0005	(16%) HOMO-5 \rightarrow LUMO+1	$\pi(L) \rightarrow \pi^*(L), ILCT$
			(84%) HOMO-1 \rightarrow LUMO+1	$\pi(L)/p\pi(o) \rightarrow \pi^*(L), ILCT$
4.3687	283.80	0.0002	(12%) HOMO-7 \rightarrow LUMO+1	$\pi(L)/p\pi(o) \rightarrow \pi^*(L), ILCT$
			(56%) HOMO-5 \rightarrow LUMO+1	$\pi(L)/p\pi(o) \rightarrow \pi^*(L), ILCT$
			(10%) HOMO-4 \rightarrow LUMO+1	$\pi(L)/p\pi(o) \rightarrow \pi^*(L), ILCT$
			(9%) HOMO-2 \rightarrow LUMO+1	$\pi(L)/p\pi(o) \rightarrow \pi^*(L), ILCT$
			(12%) HOMO-1 \rightarrow LUMO+1	$\pi(L)/p\pi(o) \rightarrow \pi^*(L), ILCT$

4.4266	280.09	0.0852	(36%) HOMO-6 \rightarrow LUMO	$\pi(L)/p\pi(o) \rightarrow \pi^*(L), ILCT$
			(31%) HOMO-4 \rightarrow LUMO	$\pi(L) \rightarrow \pi^*(L), ILCT$
			(32%) HOMO-3 \rightarrow LUMO	$\pi(L) \rightarrow \pi^*(L), ILCT$
4.5150	274.61	0.0211	(47%) HOMO-6 \rightarrow LUMO	$\pi(L) \rightarrow \pi^*(L), ILCT$
			(52%) HOMO-4 \rightarrow LUMO	$\pi(L)/p\pi(o) \rightarrow \pi^*(L), ILCT$
4.5974	269.68	0.0057	(69%) HOMO-5 \rightarrow LUMO	$\pi(L)/p\pi(o) \rightarrow \pi^*(L), ILCT$
4.8591	255.16	0.0006	(69%) HOMO-2 \rightarrow LUMO +1	$\pi(L)/p\pi(o) \rightarrow \pi^*(L), ILCT$
5.1145	242.42	0.0057	(14%) HOMO-1 \rightarrow LUMO+2	$\pi(L) \rightarrow \pi^*(L), ILCT$
			(85%) HOMO \rightarrow LUMO+2	$\pi(L) \rightarrow \pi^*(L), ILCT$
5.1485	240.82	0.0009	(70%) HOMO-7 \rightarrow LUMO	$\pi(L)/p\pi(o) \rightarrow \pi^*(L), ILCT$
5.2076	238.08	0.0013	(11%) HOMO-6 \rightarrow LUMO	$\pi(L) \rightarrow \pi^*(L), ILCT$
			$(47\%) \text{ HOMO-1} \rightarrow \text{LUMO+2}$	$\pi(L) \rightarrow \pi^*(L), ILCT$
			(18%) HOMO-1 \rightarrow LUMO+3	$\pi(L) \rightarrow \pi^*(L), ILCT$
			$(12\%) \text{ HOMO-1} \rightarrow \text{LUMO+4}$	$\pi(L) \rightarrow \pi^*(L), ILCT$
			(10%) HOMO \rightarrow LUMO+2	$\pi(L) \rightarrow \pi^*(L), ILCT$
5.2741	235.08	0.0009	(68%) HOMO-8 \rightarrow LUMO	$\pi(L) \rightarrow \pi^*(L)$, ILCT