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Materials and Methods

Constructed Cu2+-His6 structural models

The Cu2+ can bind to various binding sites in His6. Previously, we have shown by 

applying experimental techniques that the Cu2+ binds two non-adjacent imidazole groups 

in His6.1 Considering the symmetry of His6, i.e. the peptide consists of only His residues 

there is a total of six possible binding sites, as seen from scheme 1:

Scheme 1: The six possible binding sites that Cu2+ can bind to His6. 

We constructed the initial models using the Accelerys Discovery Studio software 

(http://accelrys.com/products/discovery-studio/). We interacted each His residue with 

Cu2+ for each model and accordingly we ‘moved’ the His residues closer to the Cu2+. 

Applying parameterizations for the Cu2+-peptide complex and constrains in the 

CHARMM force-field, we minimized the complex in aim to construct the initial 

predicted structure for each model. All His residues were modelled according to the 

physiological pH in all constructed peptide. The capping and uncapping of the termini 

had been performed using the CHARMM force-field.      

http://accelrys.com/products/discovery-studio/


Molecular dynamics (MD) simulations protocol

The 14 models were first minimized as previously we have performed for amyloids and 

other peptides.2-8

All-atom explicit MD simulations of the solvated models were performed in the NPT 

ensemble using NAMD9 with the CHARMM27 force-field.10,11 The models were energy 

minimized and explicitly solvated in a TIP3P water box12,13 with a minimum distance of 

15 Å from each edge of the box. Each water molecule within 2.5 Å of the models was 

removed. Counter ions were added at random locations to neutralize the models’ charge. 

The Langevin piston method14,15 with a decay period of 100 fs and a damping time of 50 

fs was used to maintain a constant pressure of 1 atm. A temperature of 310 K was 

controlled by a Langevin thermostat with a damping coefficient of 10 ps.9 The short-

range van der Waals interactions were calculated using the switching function, with a 

twin range cut-off of 10.0 and 12.0 Å. Long-range electrostatic interactions were 

calculated using the particle mesh Ewald method with a cutoff of 12.0 Å.16,17 The 

equations of motion were integrated using the leapfrog integrator with a step of 1 fs. The 

solvated systems were energy minimized for 2000 conjugated gradient steps. The counter 

ions and water molecules were allowed to move. The hydrogen atoms were constrained 

to the equilibrium bond using the SHAKE algorithm.18 The minimized solvated systems 

were energy minimized for 5000 additional conjugate gradient steps and 20,000 heating 

steps at 250 K, with all atoms being allowed to move. Then, the system was heated from 

250 K to 310 K for 300 ps and equilibrated at 310 K for 300 ps. All simulations were run 

for 100 ns at 310 K. Parameterizations for the Cu2+-peptide complexes had been 



performed for all MD simulations. The force constant values for Cu2+-N atom are in the 

range of 10-50 kcal/mol/Å2.   

Generalized Born Method with Molecular Volume (GBMV)

The relative conformational energies can be compared only for models that have the 

same sequence and number of peptides, thus the relative conformational energies had 

been computed separately for the six capped and six uncapped models. The singly-

capped (C- or N- terminal) peptide models C15 and D15 have different number of atoms, 

therefore cannot be compared with the other models (models A and B) or between each 

other.

To obtain the relative conformational energies of the twelve models of A and B, the 

models’ trajectories of the last 5 ns were first extracted from the explicit MD simulations 

excluding the water molecules - a total of 500 conformations for each model. The 

solvation energies of all conformations were calculated using the GMBV.19,20 In the 

GBMV calculations, the dielectric constant of water was set to 80. The hydrophobic 

solvent-accessible surface area (SASA) term factor was set to 0.00592 kcal/(mol Å). 

Each conformation was minimized using 1000 cycles, and the conformational energy was 

evaluated by grid-based GBMV.

A total of 3000 conformations (500 for each model) were used to construct the energy 

landscapes of the six capped and the six uncapped models and to evaluate the conformer 

probabilities by using Monte Carlo (MC) simulations. In the first step, one conformation 

of conformer i and one conformation of conformer j were randomly selected. Then, the 

Boltzmann factor was computed as e-(Ej-Ei)/kT, where Ei and Ej are the conformational 



energies evaluated using the GBMV calculations for conformations i and j, respectively, 

k is the Boltzmann constant and T is the absolute temperature (298 K used here). If the 

value of the Boltzmann factor was larger than the random number, then the move from 

conformation i to conformation j was allowed. After 1 million steps, the conformations 

‘visited’ for each conformer were counted. Finally, the relative probability of model n 

were evaluate as Pn= Nn/Ntotal, where Pn is the population of model n, Nn is the total 

number of conformations visited for model n, and Ntotal is the total steps. The advantages 

of using MC simulations to estimate conformer probability lie in their good numerical 

stability and the control that they allow of transition probabilities among several 

conformers. 

A total of 3000 conformations of the six capped peptide models (500 conformations for 

each model) and a total of 3000 conformations of the six capped peptide models (500 

conformations for each model) were used to construct the energy landscape of the six 

capped peptide models and six uncapped peptide models (Table S1). The group of these 

twelve models is likely to present may be only a very small percentage of the ensemble. 

Nevertheless, the carefully selected models cover the most likely structures.

Assigning secondary structure to amino acids by the DSSP algorithm

The DSSP algorithm is the standard method for assigning secondary structure to the 

amino acids of a protein or a peptide, given the atomic-resolution coordinates of the 

protein or the peptide. It does this by reading the position of the atoms in a protein (the 

ATOM records in a PDB file) followed by calculation of the hydrogen bond energy 

between all atoms. The best two hydrogen bonds for each atom are then used to 



determine the most likely class of secondary structure for each residue in the protein or 

the peptide. We applied the DSSP algorithm that is embedded in the CHARMM 

software.21 The DSSP algorithm provides information on specific domains that illustrate 

α-helix and β-sheet .It does not distinguish between various types of α-helix, such as 310 

helix, α-helix, etc.

Analysis of the Cu2+-Nε (His) atom and Cu2+-O (C-terminal carboxyl group) atom 

distance distribution for each His residue using the JMP program

The vertical line within each box represents the median sample value. The ends of the 

box represent the 3rd and 1st quartile, respectively. The whiskers extend from the ends of 

the box to the outermost data point that falls within the distances computed as follows: 

3rd quartile + 1.5*(interquartile range), 1st quartile - 1.5*(interquartile range).

The Cu2+ initially were coordinated to two His residues for each model. Since during the 

MD simulations both the peptide and the Cu2+ are dynamics and their locations are 

changed, thus the Cu2+-His distances are changed too during the simulations, therefore it 

is expected that a range of distances between Cu2+ and His residues will be obtained in 

the analysis.   



Table S1: The mean conformational mean energies computed from the GBMV 

method.19,20 Standard errors of the conformational mean energies were also computed. 

Conformational 
Energy (kcal/mol)

Standard Error 
(kcal/mol)

A13 -689.8 0.7
A14 -684.9 0.5
A15 -702.3 0.6
A16 -701.9 0.7
A24 -692.0 0.6
A25 -690.9 1.0
B13 -736.3 0.5
B14 -730.9 0.5
B15 -731.8 0.6
B16 -707.3 0.5
B24 -739.3 0.7
B25 -741.2 0.8



Fig. S1: The Cu2+-Nε (His) atom and Cu2+-O (C-terminal carboxyl group) atom distance 
distribution for each His residue obtained from MD simulations for models A13 and B13 
(a), A14 and B14 (b), A15 and B15 (c), A16 and B16 (d), A24 and B24 (e) A25 and B25 
(f) and C15 and D15 (g). The vertical lines within each box represent the median distance 
values.
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